Simulink® Design Verifier™ 2
User’'s Guide

1LAB
IMULINK"

LN N

How to Contact MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup

www . mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
Simulink® Design Verifier™ User’s Guide

© COPYRIGHT 2007-2011 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used

or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See

www . mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

May 2007
September 2007
March 2008
October 2008
March 2009
September 2009
March 2010
September 2010
April 2011

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

New for Version 1.0 (Release 2007a+)

Revised for Version 1.1 (Release 2007b)
Revised for Version 1.2 (Release 2008a)
Revised for Version 1.3 (Release 2008b)
Revised for Version 1.4 (Release 2009a)
Revised for Version 1.5 (Release 2009b)
Revised for Version 1.6 (Release 2010a)
Revised for Version 1.7 (Release 2010b)
Revised for Version 2.0 (Release 2011a)

Acknowledgment

Acknowledgment

The Simulink® Design Verifier™ software uses Prover Plug-In® products from
Prover® Technology to generate test cases and prove model properties.

(=) civgged i

Acknowledgment

Getting Started

1

Product Overviewttt 1-2
Key Features, 1-3
Before YouBegin 14
What You Needto Know 1-4
Required Products 1-4
Starting the Simulink® Design Verifier Software 1-5
AnalyzingaModel 1-7
About ThisDemo 1-7
Opening the Model, 1-7
Generating Test Casesciiiinnnnnneennnnn. 1-9
Combining Test Casesciiiiiiinnnneennnnn. 1-29
Analyzing a Subsystem 1-30
Analyzing a Stateflow Atomic Subchart 1-32
Example: Analyzing an Atomic Subchart Using the
Simulink® Design Verifier Software 1-32

Basic Workflow for Using the Simulink® Design Verifier
Software e 1-35

Learning Moret innnnn. 1-36

vi

Contents

Next Step .. vii i e e e e 1-36
ProductHelp i, 1-37
MathWorks Online iiiiinnnn.. 1-37

How the Simulink® Design Verifier Software

2|

Works
Analyzing a Model with Simulink® Design Verifier
Softwareiiiitii i e 2-2
Analyzing a Simple Model 2-3
Analyzing Model Blocks 2-6
Block Reduction 2-7
Analyzing Large Models 2-9
Handling Incompatibilities with Automatic
Stubbing e 2-10
What Is Automatic Stubbing? 2-10
How Automatic Stubbing Works 2-10
Analyzing a Model Using Automatic Stubbing 2-13
Approximations 2-18
Approximations During Model Analysis 2-18
Types of Approximationseeuvueemnnennnn 2-18
Converting Floating-Point Arithmetic to Rational-Number
Arithmetic e 2-19
Linearizing Two-Dimensional Lookup Tables 2-19
Unrolling While Loops viiiiiiiiiiin.. 2-20
Ensuring the Validity of the Analysis 2-20
Short-Circuiting Logic Blocks 2-21

Ensuring Compatibility with the Simulink®
Design Verifier Software

3

Checking Model Compatibility
Model Is Compatible
Model Is Incompatible
Model is Partially Compatible

Unsupported Simulink Software Features
Simulink Software Features Not Supported
Simulink Block Support Limitations
Limitations of Support for Model Blocks

Unsupported Stateflow Software Features

Support Limitations for MATLAB for Code
Generation i
Unsupported MATLAB for Code Generation Features
Limitations of MATLAB for Code Generation Library

Function Support

Fixed-Point Support Limitations

3-2
3-3

3-5

3-9

3-11
3-12

3-14

3-16
3-16

Working with Block Replacements

4 |

About Block Replacements

Built-In Block Replacements

Template for Block Replacement Rules

Defining Custom Block Replacements
Basic Workflow for Defining Custom Block
Replacements

4-4

4-7

4-8

4-8

vii

viii

Specifying Replacement Blocks 4-8

Writing Block Replacement Rules 4-9
Example: Replacing Multiport Switch Blocks 4-9
Executing Block Replacements 4-17
Configuring Block Replacements 4-17
Replacing BlocksinaModel 4-18

Specifying Parameter Configurations

5

About Parameter Configurations 5-2
Defining Parameter Configurations 5-3
Template for Defining Parameters 5-3
Syntax for Defining Parameters 5-3
Parameter Configuration Example 5-8
About This Example 5-8
Constructing the Example Model 5-9
Parameterizing the Constant Block 5-10
Preloading the Workspace Variable 5-11
Specifying a Parameter Configuration 5-11
Analyzing the Example Model 5-12
Simulating the Test Casesccviiiii... 5-15

Detecting Design Errors

6

About Design Error Detection 6-2
Workflow for Detecting Design Errors 6-3
Detecting Design Errorsina Model 6-4

Contents

About This Example
Checking Compatibility of a Model
Analyzing the Model
Reviewing the Analysis Results

6-4
6-4
6-5
6-5

Generating Test Cases

7

About Test Case Generation 7-2
Test Case Blocks, 7-2
Test Case Functions i 7-2

Workflow for Generating Test Cases 7-4

Generating Test Cases to Achieve Decision Coverage
foraModel i 7-5
Constructing the Example Model 7-5
Checking Compatibility of the Example Model 7-7
Configuring Test Generation Options 7-8
Analyzing the Example Model 7-9
Reviewing the Analysis Results 7-10
Customizing Test Generationcouuueeeeo... 7-18
Reanalyzing the Example Model 7-21
Analyzing Contradictory Models 7-22

Generating Test Cases for a Subsystem 7-23

Extending Existing Test Cases

When to Extend Existing Test Cases 8-2

Common Workflow for Extending Existing Test
CaSeS . i e e 8-3

ix

Example: Extending Existing Test Cases for a Model

that Uses Temporal Logic 8-4
Creating a Starting Test Casecccvvvvo..... 8-4
Logging the Starting Test Case 8-7
Extending the Existing Test Cases 8-8
Verifying the Analysis Results 8-10

Example: Extending Existing Test Cases for a

Closed-Loop System , 8-11
Logging a Starting Test Case 8-11
Extending the Existing Test Cases 8-12

Example: Extending Existing Test Cases for a Modified

Model i e e 8-14
Creating Starting Test Casescoviiuineeeeo... 8-14
Extending the Existing Test Cases 8-15

Achieving Test Cases for Missing Model
Coverage

9

Generating Test Cases for Missing Coverage Data 9-2

Example: Achieving Missing Coverage in a Referenced

Model i e e 9-3
Recording Coverage Data for the Model 9-3
Finding Test Cases for the Missing Coverage 9-5
Achieving the Missing Coverage 9-6
Verifying 100% Model Coverageccvuue... 9-6

Achieving Missing Coverage for Subsystems and Model
Blocks ... e 9-7

Example: Achieving Missing Coverage in a Closed-Loop

Simulation Model 9-8
Recording Coverage Data for the Model 9-8
Finding Test Cases for Missing Coverage 9-10

Contents

Verifying Model Components

10

What Is Component Verification? 10-2
Component Verification Approaches 10-2
Using Simulink® Design Verifier Tools for Component

Verificationt iiiiiiniinnnnnn.. 10-2

Functions for Component Verification 10-4

Example: Verifying a Component for Code

Generation i 10-6
About the Example Model 10-6
Preparing the Component for Verification 10-9
Recording Coverage for the Component 10-11
Using Simulink® Design Verifier Software to Record

Additional Coverageccuiiiiennneennn.. 10-12
Combining the Harness Models 10-13
Executing the Component in Simulation Mode 10-15
Executing the Component in Software-in-the-Loop (SIL)

Mode i e 10-16

Considering Specified Minimum and Maximum
Values for Inputs During Analysis

11

OVerVIieW ..ttt e e 11-2
Simulink® Design Verifier Support for Specified Input
Minimum and Maximum Values 11-2
Limitations of Simulink® Design Verifier Support for
Specified Minimum and Maximum Values 11-3

Example: Output Minimum and Maximum Values on
InportBlocks i 11-4

sldvData Fields for Minimum and Maximum Input
Values ... e 11-6

xi

Example: Minimum and Maximum Values in
Simulink.Signal Objects 11-8

Example: Minimum and Maximum Values on Stateflow
DataObjectscciiiiiiiiiiiiiiinnnn. 11-10

Example: Minimum and Maximum Values in
Subsystems e 11-13

Example: Minimum and Maximum Values in Global
DataStoragec.ciiiiiiiiiiiiiiin. 11-16

Proving Properties of a Model

12

About Property Proving 12-2
Proof Blocks e 12-2
Proof Functions i, 12-3

Workflow for Proving Model Properties 12-4

Proving PropertiesinaModel 12-5
About This Example 12-5
Constructing the Example Model 12-6
Checking Compatibility of the Example Model 12-7
Instrumenting the Example Model 12-9
Configuring Property-Proving Options 12-10
Analyzing the Example Model 12-11
Reviewing the Analysis Results 12-11
Customizing the Example Proof 12-21
Reanalyzing the Example Model 12-22
Reviewing the Results of the Second Analysis 12-23
Analyzing Contradictory Models 12-26
Proving Properties in a Large Model 12-27

Using a Verification Model to Prove System-Level
Properties 12-28
When to Use a Verification Model for Property Proving .. 12-28

xii Contents

About this Example 12-28

Understanding the Verification Model 12-29
Proving the Properties of the Design Model 12-29
Fixing the Verification Model 12-31
Proving Properties in a Subsystem 12-32
Property-Proving Examples 12-33
Basic Properties 12-33
Temporal Propertiescciiiiinnn.. 12-36

Reviewing the Results

13

Highlighted Results on the Model 13-2
When to Highlight Results on the Model 13-2
Enabling Highlighted Results on a Model 13-2
Simulink Design Verifier Results Window 13-3
Green Highlightingon Model 13-3
Red Highlightingon Model 13-3
Orange Highlighting on Model 13-3

Simulink® Design Verifier Data Files 13-5
About Simulink® Design Verifier Data Files 13-5
Overview of the sldvData Structure 13-5
Model Information Fields in sldvData 13-6
Simulating Models with Simulink® Design Verifier Data

Files o e 13-11

Harness Model 13-13
About the Harness Model 13-13
Creating a Harness Model 13-13
Anatomy of a Harness Model 13-14
Configuration of the Harness Model 13-19
Simulating the Harness Model 13-20

SystemTest TEST-Files 13-22

xiii

xiv

Simulink® Design Verifier Reports 13-25

About Simulink® Design Verifier Reports 13-25
Creating Analysis Reports 13-25
Front Matter, 13-26
Summary Chapterttt 13-26
Analysis Information Chapter 13-26
Signal Bounds Chaptercciiiiiii... 13-32
Objectives Status Chapterscccvvii... 13-33
Model Items Chapter iiiinnnnn.. 13-39
Design Errors Chapter 13-40
Test Cases Chapterccoiiiiiiinnnn. 13-41
Properties Chapter 13-46
Simulink® Design Verifier Log Files 13-48

Reviewing Analysis Results in the Model Explorer 13-49

Analyzing Large Models and Improving

14

Contents

Performance

Sources of Model Complexity 14-2
Analyzing a Large Model 14-3
Types of Large Model Problems 14-3
Using the Default Parameter Values 14-4
Modifying the Analysis Parameters 14-5
Using the Large Model Optimization 14-6
Stopping the Analysis Before Completion 14-6
Generating Reports for Large Models 14-9
Managing Model Data to Simplify the Analysis 14-10
Simplifying Data Typescciiiiiiineenn... 14-10
Constraining Datacoiiiiiinniine... 14-10

Partitioning Model Inputs and Generating Tests
Incrementally 14-14

Analyzing the Model Using a Bottom-Up Approach ... 14-16

Extracting Subsystems for Analysis 14-17
Overview of Subsystem Extraction 14-17
sldvextract Function 14-18
Structure of the Extracted Model 14-18
Analyzing Subsystems That Read from Global Data

0 =Y = Y 14-18
Analyzing Function-Call Subsystems 14-20

Analyzing Logical Operations 14-23

Handling Models with Large State Spaces 14-24

Handling Problems with Counters and Timers 14-25

Techniques for Proving Properties of Large Models .. 14-27
Finding Property Violations While Designing Your

Model 14-27
Combining Proving Properties and Finding Proof
Violationscciiuiiiiiiii i 14-28

Simulink® Design Verifier Configuration
Parameters

Overview of Simulink® Design Verifier Configuration

Parameters i 15-2
Design Verifier Pane 15-3
Design Verifier Pane Overview 15-4
Mode ... e e 15-4
Maximum analysistimeo teervnn.. 15-6
Display unsatisfiable test objectives 15-7
Automatic stubbing of unsupported blocks and functions .. 15-8
Use specified input minimum and maximum values 15-9
Output directory ittt 15-10
Make output file names unique by adding a suffix 15-12

XV

xvi

Contents

Design Verifier Pane: Block Replacements 15-13

Block Replacements Pane Overview 15-14
Apply block replacements 15-15
List of block replacement rules 15-16
File path of the output model 15-17
Design Verifier Pane: Parameters 15-18
Parameters Pane Overview 15-19
Apply parameters i e 15-19
Parameter configurationfile 15-19
Design Verifier Pane: Test Generation 15-21
Test Generation Pane Overview 15-23
Model coverage objectivesciiiiiiiiann.. 15-24
Test conditionsiiiiinneeee i 15-25
Test objectives ...ttt e e 15-26
Maximum test case stepsiiiiiii. .. 15-27
Test suite optimizationccuvvruuunnnn. 15-28
Extend existing testcasesoiiiii.. 15-29
Datafile 15-30
Ignore objectives satisfied by existing test cases 15-31
Ignore objectives satisfied in existing coverage data 15-31
Coveragedatafile, 15-32
Design Verifier Pane: Design Error Detection 15-34
Design Error Detection Pane Overview 15-35
Integeroverflow 15-35
Division by zeroc.ciiiiiiiii 15-35
Design Verifier Pane: Property Proving 15-37
Property Proving Pane Overview 15-38
Assertion blocks 15-39
Proof assumptions i 15-40
17 = 1 <Y = 15-41
Maximum violation stepsiiiiiiian... 15-42
Design Verifier Pane: Results 15-43
Results Pane Overview 15-45
Savetestdatatofile 15-46
Datafilename00, 15-47
Include expected output values 15-48
Randomize data that does not affect outcome 15-49

Display results of the analysis on the model 15-50

Save test harnessasmodel 15-52
Harness model filename 15-53
Reference input model in generated harness 15-54
Save test harness as SystemTest TEST-file (will reference
saveddatafile) i, 15-56
SystemTest filenameccuiiieoio.... 15-57
Design Verifier Pane: Report 15-58
Report Pane Overview, 15-59
Generate report of theresults 15-60
Reportfilename, 15-61
Include screen shots of properties 15-62
Displayreportciiiii 15-63

Parameter Command-Line Information Summary 15-64

Simulink Block Support

16/

Overview of Simulink Block Support 16-2
Additional Math and Discrete Library 16-3
Commonly Used Blocks Library 16-4
Continuous Library 16-5
Discontinuities Library 16-6
Discrete Library 16-7
Logic and Bit Operations Library 16-8
Lookup Tables Library 16-9

xXvii

Math Operations Library 16-10

Model Verification Library 16-12
Model-Wide Utilities Library 16-13
Ports & Subsystems Library 16-14
Signal Attributes Library 16-16
Signal Routing Library 16-17
Sinks Library00 16-18
Sources Library00, 16-19
User-Defined Functions Library 16-20

Support for Code Generation from MATLAB

17

Glossary

Examples

Generating Test Cases A-2
Automatic Stubbing, A-2

xviii Contents

Working with Block Replacements A-2

Specifying Parameter Configurations A-2
Component Verification A-3

Considering Specified Minimum and Maximum
Inputs A-3
Proving Propertiesofa Model A-3
Index

Xix

XX Contents

Getting Started

® “Product Overview” on page 1-2

¢ “Key Features” on page 1-3

¢ “Before You Begin” on page 1-4

® “Starting the Simulink® Design Verifier Software” on page 1-5
e “Analyzing a Model” on page 1-7

® “Analyzing a Subsystem” on page 1-30

® “Analyzing a Stateflow Atomic Subchart” on page 1-32

e “Basic Workflow for Using the Simulink® Design Verifier Software” on
page 1-35

¢ “Learning More” on page 1-36

1 Getting Started

Product Overview

1-2

Simulink Design Verifier uses formal methods to identify hard-to-find design
errors in models without requiring extensive tests or simulation runs. Design
errors detected include dead logic, integer overflow, division by zero, and
violations of design properties and assertions.

Simulink Design Verifier highlights blocks in the model containing these
errors and blocks proven to be without them. For each block with an error,
it calculates signal-range boundaries and generates a test vector that
reproduces the error in simulation.

The generated test vectors provide simulation inputs that exercise
functionality captured in the model structure and specified by the test
objectives. The test vectors, together with the design properties and test
objectives, can be used to verify code running in software-in-the-loop (SIL)
and processor-in-the-loop (PIL) test configurations.

Key Features

Key Features

Detection of dead logic, integer and fixed-point overflows, division by zero,
and violations of design properties

Blocks and functions for modeling functional and safety requirements

Test vector generation from functional requirements and model coverage
objectives, including condition, decision, modified condition/decision
(MCDC), and signal range

Property proving, with generation of violation examples for analysis and
debugging

Fixed-point and floating-point model support

1-3

1 Getting Started

Before You Begin

1-4

In this section...
“What You Need to Know” on page 1-4

“Required Products” on page 1-4

What You Need to Know

Getting started with the Simulink Design Verifier software requires that
you have experience using model coverage, as well as building and running
Simulink® models.

For more information, see:

e “Validating Your Model with Model Coverage” in the Simulink® Verification
and Validation™ User’s Guide

® Simulink Getting Started Guide and Simulink User’s Guide

Required Products

You must have the following products installed to use the Simulink Design
Verifier software:

e MATLAB®
e Simulink

e Simulink Verification and Validation

If you want to use the Simulink Design Verifier software to analyze models
that contain Stateflow® charts, you must have the Stateflow installed.

Starting the Simulink® Design Verifier™ Software

Starting the Simulink Design Verifier Software

The Simulink Design Verifier software is part of your MATLAB installation.

To open the Simulink Design Verifier block library, type at the MATLAB
prompt, type sldvlib.

I "

W Library: sldvlib =neR <=

File Edit View Format Help

O S = &2

©-©@ Gy

Objectives and Constraints erification WHilities
_mnn
1 Example
xxxxxxxxxxxxxxxxxxxxxx - Properties

Temporal Operators

Copyright 1920-2010 The MathWeds, Inc.

Ready 100% Locked

The Simulink Design Verifier block library has three categories of blocks:
¢ Objectives and Constraints — Blocks that define custom objectives and
constraints

e Temporal Operators — Blocks that define temporal properties on Boolean
signals

1 Getting Started

e Verification Utilities — Miscellaneous verification utilities

The block library also has a sublibrary, Example Properties, that includes
examples of how to specify common properties in your model. You can easily

adapt these examples for use in your models.

1-6

Analyzing a Model

Analyzing a Model

In this section...
“About This Demo” on page 1-7

“Opening the Model” on page 1-7

“Generating Test Cases” on page 1-9

“Combining Test Cases” on page 1-29

About This Demo

The following sections describe a demo model, Cruise Control Test Generation.
This demo illustrates how to use the Simulink Design Verifier software to
generate test cases that achieve complete model coverage. Through this
demo, you learn how to analyze models with the Simulink Design Verifier
software and interpret the results.

Opening the Model

To open the Cruise Control Test Generation model, at the MATLAB prompt,
enter:

sldvdemo_cruise_control

1 Getting Started

1-8

E sldvdemo_cruise_control

File Edit View Simulation Format Tools Help
D=dS < » = fiog [Nomal -
Simulink Design Verifier
Cruise Control Test Generation
1} enable
enable
2 | brake throt———— {1
brake throt
= P st
set [0 100]
(86— —— | =peed
speed
4y plinc target————— {2
inc target
5} P dec
dec
Controller

This model is configured to generate test cases that achieve complete model
coverage. By default Simulink Design Verifier generates test cases that satisfy
objectives in the fewest steps. One of the test objectives forces the discrete integrator
in the Pl controller to exceed its upper limit. When you run Simulink Design Verifier
without constraints the limit is exceeded in a single step by forcing speed to be 500.
The constraint on speed limits the values in test cases between 0 and 100. This
forces the test cases to take several samples to exceed the integrator limit.

Run Toggle Speed
Constraint
(double-click) (double-click)

View Options
(double-click)

Run Simulink Design Verifier Toggle Constraint

Copyright 2008-2010 The MathWarks, Inc.

Ready 100%

FixedStepDiscrete

View Simulink Design Verifier Options

Analyzing a Model

Generating Test Cases

¢ “Running the Analysis” on page 1-9

® “Generating Analysis Results” on page 1-11

e “Highlighting Analysis Results on Model” on page 1-12

® “Generating a Detailed Analysis Report” on page 1-15

® “Creating a Harness Model” on page 1-23

® “Simulating Tests and Producing a Model Coverage Report” on page 1-28

Running the Analysis

To generate test cases for the Cruise Control Test Generation model, open the
model window and double-click the block labeled Run.

The Simulink Design Verifier software begins analyzing the model to generate
test cases. During its analysis, the software displays a log window.

1 Getting Started

E Simulink Design Verifier log: sldvdermno_cruise_control | 3 |
Progress]
Objectives processed 32/34
Satisfied 32
Falsified 0
Elapsed time 0:02
24-5ep-2010 15:06:23
Starting test generation for model 'sldvdemo_cruise_control'
Compiling model... done
Translating model... done L
'sldvdemo_cruise_control' is compatible with Simulink Design 1
Verifier.
Generating tests...
SATISFIED
Controller/Switchl
logical trigger input true {output is from 1st input port)
SATISFIED
Controller/Logical Operatorl <

The log window shows you the progress of the Simulink Design Verifier
analysis.

If you need to terminate an analysis while it is running, click Stop. The
software asks if you want to produce results. If you click Yes, the software
creates a data file based on the results achieved so far. The path name of the
data file appears in the log window.

1-10

Analyzing a Model

The data file is a MAT-file that contains a structure named sldvData. This
structure stores all the data that the software gathers and produces during
the analysis.

For more information, see “Simulink® Design Verifier Data Files” on page
13-5.

Generating Analysis Results
When the Simulink Design Verifier software completes its analysis of the

sldvdemo_cruise_control model, the log window displays several options:
e Highlight analysis results on model

¢ Generate detailed analysis report

¢ Create harness model

¢ Simulate tests and produce a model coverage report

Note When you analyze other models, depending on the results of the
analysis, you may see a subset of these four options.

1-11

1 Getting Started

1-12

I

Progress -]

Objectives processed 34/34

Satisfied 34
Falsified 0
Elapsed time 0:07

Test generation completed normally.
All 34 objectives satisfied.

Results:

® Highlight analysis results on model

* Generate detailed analysis report

* Create harness model

* Simulate tests and produce a model coverage report

Data saved in: sldvdemo cruise control sldvdata.mat

in folder: 5:
\Adoc\matlab\help\toolbox\sldviexamplesinonshipping\sldy _outp
ut'sldvdemo cruise control

E Simulink Design Verifier log: sldvdemo_cruise_control @

m

View Log H Close

The sections that follow describe these options in detail.

Highlighting Analysis Results on Model

In the Simulink Design Verifier log window, if you click Highlight analysis
results on model, the software highlights objects in the model in three

different colors, depending on the analysis results:

Analyzing a Model

® “Green: Objectives Satisfied” on page 1-13
® “Orange: Objectives Undecided” on page 1-14
e “Red: Objectives Unsatisfiable” on page 1-14

When you highlight the analysis results on a model, the Simulink Design
Verifier Results window opens. When you click an object in the model that has
analysis results, that window displays the results summary for that object.

Green: Obijectives Satisfied. Green outline indicates that the analysis
generated test cases for all the objectives for that block. If the block is a
subsystem or Stateflow atomic subchart, the green outline indicates that
the analysis generated test cases for all objectives associated with the child
objects.

For example, in the sldvdemo_cruise_control model, the green outline
shows that the PI controller subsystem satisfied all test objectives. The
Informer lists the two satisfied test objectives for the PI controller subsystem.

¥

Il
—-error throt—

Pl Controller

Simulink Design Verifier Results
= = i - {3
Back to summary - Close results

sldwvdemo_cruise_control/Controller/PI Controller

enable logical value F SATISFIED

enable logical value T SATISFIED

1-13

1 Getting Started

1-14

Orange: Objectives Undecided. Orange outline indicates that the

analysis was not able to determine if an objective was satisfiable or not. This
situation might occur when:

® The analysis times out

* The software satisfies test objectives without generating test cases due to:
= Automatic stubbing errors
= Limitations of the analysis engine

In the following example, the analysis timed out before it could determine if
one of the objectives for the Discrete-Time Integrator block was satisfiable.

Simulink Design Verifier Results
= = Y
Back to summary - Close results

sldvdemo_cruise_control_mod/Controller/PI Controller/Discrete-
Time Integrator

- B

integration result <= lower limit F SATISFIED
integration result <= lower limit T SATISFIED

integration result == upper limit F SATISFIED
integration result == upper limit T

Red: Objectives Unsatisfiable. Red outline indicates that the analysis

found some objectives for which it could not generate test cases, most likely
due to unreachable design elements in your model.

In the following example, the input 2 always satisfies the criterion for the
Switch block, so the Switch block never passes through the value of input 3.

Analyzing a Model

1

—a

YYYy

Switch

Sirmulink Design Verifier Results

el - &2
Back to summary - Close results
ex_generate_test_cases_with_tc_block/Switch

trigger == threshold false (output is from 3rd input UNSATISFIABLE
port)

trigger == threshold true {output is from 1st input port) SATISFIED

Generating a Detailed Analysis Report

In the Simulink Design Verifier log window, if you click Generate detailed
analysis report, the software saves and then opens a detailed report of the
analysis. The path to the report is:

<current_MATLAB_folder>/sldv_output/...

sldvdemo_cruise_control/sldvdemo_cruise_control_report.html

The HTML report includes the following chapters.

1-15

1 Getting Started

1-16

Tahle of Contents

1. Summary
2. Analysis Information

3. Test Ohjectives Status
4. Model ltems
5 Test Cases

For a description of each report chapter, see:

* “Summary” on page 1-16

® “Analysis Information” on page 1-17

® “Test Objectives Status” on page 1-18

e “Model Items” on page 1-21

® “Test Cases” on page 1-23

Summary. In the Table of Contents, click Summary to display the
Summary chapter, which includes the following information:

e Name of the model

® Mode of the analysis (test generation, property proving, design error
detection)

e Status of the analysis
® Length of the analysis in seconds

e Number of objectives satisfied

Analyzing a Model

Chapter 1. Summary

Analysis Information

Madel: sldvdermo_cruise_cantrol
Moade: TestGeneration

Status: Completed narmally
Analysis Time: Js

Objectives Status

Number of Objectives: 34
Chjectives Satisfied: 34

Analysis Information. In the Table of Contents, click Analysis
Information to display information about the analyzed model and the
analysis options.

1-17

1 Getting Started

1-18

Chapter 2. Analysis Information

Table of Contents

Model Information
Analysis Options
Constraints

Approximations

Model Information

File:
“ersion:
Time Stamp:
Author;

Analysis Options

Mode:

Test Suite Optimization:
Maximum Testcase Steps:
Test Conditions:

Test Objectives:

Model Coverage Ohbjectives:
Maximum Processing Time:
Block Replacement:
Farameters Analysis:
Farameters Configuration File:
Save Data:

Save Harness:

Save Report:

sldvdemo_cruise_control
1.51

Thu Sep 16 17:09:09 2010
The Math'Waorks Inc.

TestGeneration
CombinedOhbjectives
500 time steps
UselocalSettings
UselocalSettings
MCDC

B0s

off

on
sldv_params_template.m
on

off

off

Test Objectives Status. In the Table of Contents, click Test Objectives
Status to display a table of satisfied objectives. The following figure shows a
partial list of the objectives satisfied in the Cruise Control Test Generation

model.

Analyzing a Model

Chapter 3. Test Objectives Status

Table of Contents

Chjectives Satisfied

Objectives Satisfied

Simulink Design Werifier found test cases that exercise these test objectives.

_ Test

[Type Model Item Description Case
logical trigger input false

1 |Decision |ControllerSwitch (output is from 3rd input 3
port)
logical trigger input true

2 |Decision [ControllerSwitchi (output is from Tst input |1
port)

3 |Condition |Controller/Logical Operatord Logic: input port 1T is

4 |Condition |Controller/Logical Operataor] Laogic: input port 1 F 2

5 Condition |Controller/Logical Operator? Logic: input port 1T ii

£ [Condition |[Controller/Logical Operatord Logic: input port 1 F 3

7 |Condition |Controller/Logical Operator? Logic: input port 2T I

8 [Condition |Controller/logical Operator? Lagic: input port 2 F 3
Logic: MCDC

9 Mcde Controller/Logical Operator? expression for output |1
with input port 1 T

The Objectives Satisfied table lists the following information for the model:

® # — Objective number

e Type — Objective type

¢ Model Item — Element in the model for which the objective was tested.
Click this link to display the model with this element highlighted.

¢ Description — Description of the objective

1-19

1 Getting Started

* Test case — Test case that achieves the objective. Click this link for more
information about that test case.

In the row for objective 30, click the test case number (8) to display more
information about test case 8 in the report’s Test Cases chapter.

TestCase 8
Summary
Length: 0.06 Seconds (7 sample periods)
Chbjective Count: 1
Objectives
Step Time Model ltem Objectives
Controller’Pl Controller/Discrete-Time integration result == upper
7 0.06 . o
Integrator limit T

Generated Input Data

Time 0 0.010.050.06
Step 1 26 7
enablell |1 1
brake 0O 0
set 1 [0 1
inc 1 1 -
dec 0O D0 -
spead 9710 0

In this example, Test Case 8 satisfies one objective, that the integration result
be greater than or equal to the upper limit T in the Discrete-Time Integrator
block. The table lists the values of the six signals from time 0 through time
0.06.

1-20

Analyzing a Model

Model Items. In the Table of Contents, click Model Items to see detailed
information about each item in the model that defines coverage objectives.
This table includes the status of the objective at the end of the analysis. Click
the links in the table for detailed information about the satisfied objectives.

1-21

1 Getting Started

Chapter 4. Model Iltems

Table of Contents

Controller/Switch

Controller/Logical Operator]

Controller/Logical Operator?

ControllerfLogical Operator

Controller/Pl Controller

Controller/Pl Controller/Discrete-Time Integrator
Controller/Switch2

Controller/Switch3

This section presents, for each ohject in the model defining coverage objectives, the
list of objectives and their individual status at the end of the analysis. It should
match the coverage report obtained from running the generated test suite on the
model, either from the harness model or by using the sldvruntests command.

Controller/Switch1
Wiew
_ Test
#: Type Description Status Case
logical trigger input
1 Decision false (output is from [Satisfied 3
3rd input port)
logical trigger input
" Decision true (output is from 1st |Satisfied |1
input port)
Controller/Logical Operator1
Wiew
- Test
#: Type Description Status Case
3 Condition Logic: input port 1T [Satisfied |1
o Condition Logic: input part 1 F [Satisfied 2

1-22

Analyzing a Model

Test Cases. In the Table of Contents, click Test Cases to display detailed
information about each generated test case, including:

® Length of time to execute the test case

® Number of objectives satisfied

¢ Detailed information about the satisfied objectives

¢ Input data

For an example, see the section for Test Case 8 in “Test Objectives Status”
on page 1-18.

Creating a Harness Model

In the Simulink Design Verifier log window, if you click Create
harness model, the software creates and opens a harness model named
sldvdemo_cruise_control_harness.

1-23

Getting Started

1-24

EJ sldvdemo_cruise_control_harness E'@
File Edit View Sirmulation Format Tools Help
O =S L » = [0.069.. |Nomal |
Size-Type
enable o enabile
Test Case 1
brake | braks throt » [:-)\.
/\ et .. et th rDt
2
inc | inc: -
target
dec Je{ d=c target
spesd | =pead
Inputs Test Unit {copied from sldvdemo_oruise_control)
[
DoC
Teoxt
Test Case Explanation
Ready 100% FixedStepDiscrete

The harness model contains the following blocks:

® The Test Case Explanation block is a DocBlock block that documents the
generated test cases. Double-click the Test Case Explanation block to view
a description of each test case for the objectives that the test case satisfies.

Analyzing a Model

File Edit Text Go Teools Debug Desktop Window Help ¥ A x
NEH|sRB2C |0 Aed iR ? |0)

‘BB | -0 [+ | +11 [x |2 @

1 |Test Caze 1 (8 Cbjectives) T
2 Parameter wvalues:
: =
4 1. Controller/Switchl - logical trigger input tI
5 2. Controller/Logical Operatorl - Logic: input }
& 3. Controller/Logical Operator2 - Logic: input }
() 4, Controller/Logical Operator?2 - Logic: MCDC e:
i} 5. Controller/Logical Operator - Logic: input pt
9 6. Controller/Logical Operator - Logic: input pe
10 7. Controller/Logical Operator - Logic: MCDC exg
11 8. Controller/PI Controller - enable logical wva:
12
13 Te=st Case 2 (3 Cbjectives)
14 Parameter values:
15
IlE__ 1. Controller/Logical Coeratorl - Logic: input 17
4 1 3
plain text file Ln 1 Col 1 OVR

¢ The Test Unit block is a Subsystem block that contains a copy of the
original model that the software analyzed. Double-click the Test Unit block
to view its contents and confirm that it is a copy of the Cruise Control
Test Generation model.

Note You can configure the harness model to reference the model that you
are analyzing using a Model block instead of using a subsystem. In the
Configuration Parameters dialog box, on the Design Verifier > Results
pane, select Save test harness as model and Reference input model
in generated harness.

1-25

1 Getting Started

1-26

¢ The Inputs block is a Signal Builder block that contains the generated
test case signals. Double-click the Inputs block to open the Signal Builder
dialog box and view the 10 test case signals.

® The Size-Type block is a subsystem that transmits signals from the Inputs
block to the Test Unit block. This block ensures that the signals are the
appropriate size and data type for the Test Unit block.

The Signal Builder dialog box contains nine test cases. To look at Test Case 8:

1 Click the right-facing arrow next to the test case tabs | 4 | to find the
Test Case 8 tab.

2 Click the Test Case 8 tab to display the signal values for Test Case 8.

Analyzing a Model

uSignalBuilder(sldvdemn_cruise_cu:untru:ul_harnessﬂnputs.] (= || = | ==
File Edit Group Signal Axes Help o
SH| $BREoo —~ILEFREE >0 =4
se 5 Y\Test Case 6 Y\Test Case 7)(Test Case 8 \{\Test Case 9 ‘1 E]
2 """""" [': """""" ': """""" ':' """""" |r """""" [[
19—=cnable—¢ ; ; + ¢
.9 ____________ | | — | — — — I |
g [brake™ | | | | | |
“-ﬁ [osetoof f— S S e
U'a R O el SR SR Haliaisielsiets
”Ir """""" S T A A A I E
] | | | | | |
00 e 1o oo poooeeooooe- Poooomoooe- :
[-speed f - H— H—— H— —— — ;
0 0.01 0.02 0.03 0.04 0.05 0.06 0.0
Time (sec)
LLeti Pormt Hight Point
Hame: enable T TJ
Index: 1 v i o =l
' 1 L] 3
Adjust =egment % position enable (#1) [YMin YMax]

In Test Case 8 at 0.01 seconds:

¢ The enable and inc signals remain 1.
® The brake and dec signals remain 0.
® The set signal transitions from 1 to 0.

® The speed signal transitions from 100 to O.

1-27

1 Getting Started

In the Signal Builder block, the signal group satisfies the test objectives
described in the Test Case Explanation block.

3 To confirm that the Simulink Design Verifier software achieved complete
model coverage, simulate the harness model using all the test cases. In
the Signal Builder dialog box, click the Run all and produce coverage

all
button ﬂ

The Simulink software simulates all the test cases. The Simulink
Verification and Validation software collects coverage data for the harness
model and displays a coverage report. The report summary shows that the
sldvdemo_cruise_control_harness model achieves 100% coverage.

Summary

Model Hierarchy/Complexity: Test1

D1 Cc1 MCDC

1'_ -)) 8 100% o 100% - 00% ———
gldvaemo cruise cortrol harness
2. . . Test U.nr.t i CDDIEd.fI':JI11 7 100% 100% 100%
sldvdemo cruise control)
i Contraller 7O100% s 100% - 100% ——
4. Bl Cortraller 4 100% —— A A

Simulating Tests and Producing a Model Coverage Report

In the Simulink Design Verifier log window, if you click Simulate tests and
produce a model coverage report, the software simulates the model and
produces a coverage report for the sldvdemo_cruise _control model. The
software stores the report with the following name:

<current_MATLAB_folder/sldv_output/sldvdemo_cruise_control/sldvdemo_cruise_control_report.html

When you click Run all and produce coverage to simulate tests in the
harness model, you may see the following differences between this coverage
report and the report you generated for the model itself:

1-28

Analyzing a Model

® The harness model coverage report might contain additional time steps.
When you collect coverage for the harness model, the model stop time
equals the stop time for the longest test case. As a result, you might achieve
additional coverage when you simulate the shorter test cases.

® The cyclomatic complexity coverage for the Test Unit subsystem in the
harness model might be different than the coverage for the model itself due
to the structure of the harness model.

Combining Test Cases

If you prefer to review results that are combined into a smaller number of test
cases, set the Test suite optimization parameter to LongTestcases. When
you use the LongTestcases optimization, the analysis generates fewer, but
longer, test cases that each satisfy multiple test objectives. This optimization
creates a more efficient analysis and easier-to-review results.

Open the sldvdemo_cruise_control model and rerun the analysis with the
Long test cases optimization:

1 Select Tools > Design Verifier > Options.

2 In the Configuration Parameters dialog box, in the Select tree on the left
side, under the Design Verifier category, select Test Generation.

3 Set the Test suite optimization parameter to LongTestcases.
4 Click Apply and OK to close the Configuration Parameters dialog box.

5 In the sldvdemo_cruise_control model, double-click the block labeled
Run.

6 In the log window, click Create harness model.

In the harness model, the Signal Builder dialog box now contains two
longer test cases instead of the nine shorter test cases created in “Analyzing
a Model” on page 1-7.

7 Click Run all and produce coverage to collect coverage.

The analysis still satisfies all 34 objectives.

1-29

1 Getting Started

Analyzing a Subsystem

In addition to analyzing a model, you can analyze a subsystem within a
model. This technique is good for large models, where you want to review the
analysis in smaller, manageable reports.

This example analyzes the Controller subsystem in the
sldvdemo_cruise_control model.

1 Open the demo model:

sldvdemo_cruise_control

2 Right-click the Controller subsystem, and select Design Verifier > Enable
“Treat as atomic unit” to analyze.

The Function Block Parameters dialog box for the Controller subsystem
opens.

3 Select Treat as atomic unit.

An atomic subsystem executes as a unit relative to the parent model;
subsystem block execution does not interleave with parent block execution.
You can extract atomic subsystems for use as standalone models.

You must set the Treat as atomic unit parameter to analyze a subsystem
with the Simulink Design Verifier software.

After you set the parameter, other parameters become available, but you
can ignore them.

4 Click OK to close the dialog box.

5 Select File > Save As and save the Cruise Control Test Generation model
under a new name.

6 To start the subsystem analysis and generate test cases, right-click the

Controller subsystem, and select Design Verifier > Generate Tests for
Subsystem.

1-30

Analyzing a Subsystem

7 The Simulink Design Verifier software analyzes the subsystem. When the
analysis 1s complete, view the analysis results for the Controller subsystem
by clicking one of the following options:

e Highlight analysis results on model
* Generate detailed analysis report
¢ Create harness model

¢ Simulate tests and produce a model coverage report

8 Review the results of the subsystem analysis and compare them to the
results of the full-model analysis described in “Analyzing a Model” on page
1-7:

® The subsystem analysis analyzes the Controller as a standalone model.

® The Controller subsystem contains all the test objectives in the Cruise
Control Test Generation model, so both analyses generate the same
test cases.

1-31

1 Getting Started

Analyzing a Stateflow Atomic Subchart

In a Stateflow chart, an atomic subchart is a graphical object that allows you
to reuse the same state or subchart across multiple charts and models. You
can use the Simulink Design Verifier software to analyze atomic subcharts
individually. You do not have to analyze the chart that contains the atomic
subchart, or the model that contains the chart.

If you are having problems analyzing a large model, analyzing an atomic
subchart in a controlled environment is helpful. As described in “Analyzing
the Model Using a Bottom-Up Approach” on page 14-16, by analyzing atomic
subcharts or other components in the model hierarchy individually, you can
analyze a model to:

® Solve problems that slow down or prevent test generation, property
proving, or design error detection.

® Analyze model components that are unreachable in the context of the
container model or chart.

Note For more information about atomic subcharts, see “What Is an Atomic
Subchart?” in the Stateflow documentation.

Example: Analyzing an Atomic Subchart Using the
Simulink Design Verifier Software

The sf_atomic_sensor_pair demo model models a redundant sensor pair
using atomic subcharts. This example analyzes the Sensor1 subchart in the
RedundantSensors chart.

1 Open the sf_atomic_sensor_pair demo model:

sf_atomic_sensor_pair

This model demonstrates how to model a simple redundant sensor pair
using atomic subcharts.

2 Double-click the RedundantSensors chart to open it.

1-32

Analyzing a Stateflow® Atomic Subchart

=

nStateﬂDw(chart] sf_atomic_sensor_pair/Redund... | = [=] 3
File Edit View Simulatic Debu¢ Tools Forma Add Pattern Help

FEHE ft R =>4 EE >0 e ¥
l =
@ (Link)
?%] Sensort
ca
b L
[Sensorl.inFailed()]
(Link)
Sensor

BB EE

[SensorZ.inFailed()]

i

p

o]

4

Ready

This Stateflow chart has two atomic subcharts:

® Sensori

® Sensor2

1-33

1 Getting Started

3 To analyze the Sensor1 subchart using the Simulink Design Verifier
software, right-click the subchart and select Design Verifier > Generate
Tests for Subchart.

During the analysis, the software creates a Simulink model named
Sensori.mdl that contains the Sensor1 subchart. The new model contains
Inport and Outport blocks that respectively correspond to the data objects u
and y in the subchart.

E

W Sensor oo s
File Edit WYiew Simulation Format Teools Help
D =EE £ »
1 e Ind Out 1]
u ¥
Sensori
F|100% FixedStepDiscrete

The software saves the new model and other files generated by the analysis
in:

matlabroot/sldv_output/Sensori

4 When the analysis is complete, view the analysis results for the Sensor1
subchart by clicking one of the following options:

e Highlight analysis results on model
¢ Generate detailed analysis report
¢ Create harness model

¢ Simulate tests and produce a model coverage report

1-34

Basic Workflow for Using the Simulink® Design Verifier™ Software

Basic Workflow for Using the Simulink Design Verifier

Software
The basic workflow for analyzing your model is described in the following
steps. For more information, see the cited sections and chapters in the
Simulink Design Verifier User’s Guide.
Step | Action See...
1 Check the compatibility of your model. Chapter 3, “Ensuring Compatibility with the

Simulink® Design Verifier Software”

2 Optionally, prepare your model for ¢ Chapter 4, “Working with Block
analysis. Replacements”
¢ Chapter 5, “Specifying Parameter
Configurations”
3 Set Simulink Design Verifier options. Chapter 15, “Simulink® Design Verifier
Configuration Parameters”
4 Analyze your model to: ¢ Chapter 6, “Detecting Design Errors”
° [13 : b2l
o Detect design errors Chapter 7, “Generating Test Cases
° « o °
e Generate test cases Chaptfr 12, “Proving Properties of a
Model
® Prove properties
5 Generate the results “Generating Analysis Results” on page 1-11
6 Interpret the results. Chapter 13, “Reviewing the Results”

1-35

1 Getting Started

Learning More

In this section...

“Next Step” on page 1-36
“Product Help” on page 1-37
“MathWorks Online” on page 1-37

Next Step

To begin learning how to use the Simulink Design Verifier software, see
Chapter 3, “Ensuring Compatibility with the Simulink® Design Verifier
Software”. Also see the following topics to continue your exploration of the

software:
To... See...
Detect design errors Chapter 6, “Detecting Design Errors”
Generate test cases ® “Generating Test Cases to Achieve
Decision Coverage for a Model” on page
7-5
® “Generating Test Cases for a Subsystem”
on page 7-23
Prove properties ® “Proving Properties in a Model” on page
12-5
® “Proving Properties in a Subsystem” on
page 12-32
Extend existing test cases “Example: Extending Existing Test Cases
for a model for a Model that Uses Temporal Logic” on
page 8-4
“Example: Extending Existing Test Cases
for a Closed-Loop System” on page 8-11
“Example: Extending Existing Test Cases
for a Modified Model” on page 8-14

1-36

Learning More

To...

See...

Generate test cases for
missing coverage

“Example: Achieving Missing Coverage in a
Referenced Model” on page 9-3

“Example: Achieving Missing Coverage in a
Closed-Loop Simulation Model” on page 9-8

Verify individual
components in a model

“Example: Verifying a Component for Code
Generation” on page 10-6

Product Help

In the MATLAB desktop, click & for help. In the Contents pane, click the

product name.

For...

See...

List of functions

“Functions — Alphabetical List”

List of blocks

Blocks — Alphabetical List

Tutorials

Examples in Documentation

More product demonstrations

Simulink Design Verifier Demos

What’s new in this product

Release Notes

MathWorks Online

For addition information and support, go to the MathWorks® Web site:

http://www.mathworks.com/products/sldesignverifier/

1-37

http://www.mathworks.com/products/sldesignverifier/

1 Getting Started

1-38

How the Simulink Design
Verifier Software Works

¢ “Analyzing a Model with Simulink® Design Verifier Software” on page 2-2
® “Analyzing a Simple Model” on page 2-3

® “Analyzing Model Blocks” on page 2-6

e “Block Reduction” on page 2-7

® “Analyzing Large Models” on page 2-9

e “Handling Incompatibilities with Automatic Stubbing” on page 2-10

® “Approximations” on page 2-18

e “Short-Circuiting Logic Blocks” on page 2-21

2 How the Simulink® Design Verifier™ Software Works

2-2

Analyzing a Model with Simulink Design Verifier Software

Simulink Design Verifier software is an efficient analysis tool that explores
the simulation behavior of a Simulink model in three ways:

¢ Identifies design errors that cause data overflow or division-by-zero errors.

e Searches the possible values of model inputs and block parameters to find a
simulation that satisfies test objectives.

® Proves model properties and generates examples of property violations.

The Simulink Design Verifier analysis always begins with the initial
configuration of the model and can span an arbitrary number of time steps.
Generally, there is an infinite number of paths through the model because the
values of inputs are independent from one time step to the next, and there is
no fixed limit to the number of time steps.

If the software could not find a way to reduce the search space, it might
continue its analysis indefinitely. The software limits the analysis by tracking
the persistent information in the model such as discrete states, data-store
memories, and persistent variables.

After an analysis explores all possible inputs and parameters from all possible
configurations, the results are equivalent to those of a complete search of
every possible infinite sequence of input parameters.

Analyzing a Simple Model

Analyzing a Simple Model

This simple Simulink model includes two Logical Operator blocks and a
Memory block.

P "

EJ ex_simple_model_how_sldv_works EI@
File Edit WYiew Simulation Format Teols Help
= 3 100 |Nomz
..-AND
— _.'{Ij
e out
Logical
{I}——b— Operator
HOR -
in —- D
Logical Memorny
Operator
Ready 100% FixedStepDiscrete

The persistent information in this model is limited to the Boolean value of
the Memory block. The input to the model is a single Boolean value. The
following table describes the complete behavior of the model, including the
behavior that would result from an arbitrarily long sequence of inputs.

| Input Memory Output of XOR Output of AND
Value Block = Next Block
Memory Value
1 false false false false
2 true false true false
3 false true true false
4 true true false true

2 How the Simulink® Design Verifier™ Software Works

2-4

Suppose you want to generate test cases that result in a true output; this goal
1s your test objective. If you run the Simulink Design Verifier software to
generate test cases that result in a true output, the software searches this
table to see if such a scenario is possible.

After the Simulink Design Verifier software discovers a configuration that
satisfies the test objective (in this case, when both the input and the Memory
block output are true), it needs to find a path to reach this configuration from
the initial conditions. If the initial memory value is true, the test case only
needs to be a single time step (row 4) where the input was true.

If the initial memory value is false (the default), the test case must force the
memory value to be true. In this example, the path requires two steps:

1 The input value is true and the memory value is false (row 2). Thus, the
output of the XOR block is true, making the memory value true.

2 Now that the input value and memory value are both true (row 4), the
output is true, so the analysis achieves the specified test objective.

An infinite number of test cases can cause the output to be true, and
regardless of the state value, the output can be held false for an arbitrary time
before making it true. When the Simulink Design Verifier software searches,
it returns the first test case it encounters that satisfies the objective. This
case is invariably the simulation with the fewest time steps. Sometimes you
may find this result undesirable because it is unrealistic or does not satisfy
some other test requirement.

The same basic principles from this example apply to property proving and
test case generation. During test case generation, option parameters explicitly
specify the search criteria. For example, you can specify that Simulink Design
Verifier software find paths for all outputs or find only those paths that make
where the output is true.

During a property proving analysis, you specify a functional requirement, or
property, that you want the Simulink Design Verifier software to prove, for
example, that the output is always true. If the search completes without
finding a path that violates the property, the proof of that property completes
successfully. If the software finds a path where the output is false, it creates a
counterexample that causes the output to be false.

Analyzing a Simple Model

During an error detection analysis, the Simulink Design Verifier software
identifies objectives where data overflow or division-by-zero errors can and
cannot occur. The analysis creates test cases that demonstrate how the
errors can occur.

2-5

2 How the Simulink® Design Verifier™ Software Works

2-6

Analyzing Model Blocks

If your model contains Model blocks that reference external models, the
Simulink Design Verifier software creates test cases for the top-level model,
considering each referenced model in its execution context.

If you have multiple Model blocks that reference the same model, the software
analyzes each instance of the referenced model in the context from which it is
referenced. The software attempts to satisfy test objectives for each instance
within its execution context in the top-level model. If you have three Model
blocks that reference a certain model, the analysis produces results for all
three instances.

If you simulate the model using the test cases that the analysis generates, and
collect coverage, the Simulink Verification and Validation software combines
the coverage data for multiple instances of the same referenced model. The
simulation produces one set of coverage results for each referenced model; if
you have three Model blocks that reference a certain model, the simulation
produces one set of results for that referenced model.

For example, suppose you have three Model blocks that reference the same
model. Suppose also that referenced model has three test objectives. When
you run a Simulink Design Verifier analysis for the top-level model, the total
number of test objectives for the three Model blocks is nine. If you then
simulate the model with the test cases generated by the analysis, the coverage
results for that referenced model specifies three test objectives.

Block Reduction

Block Reduction

Block reduction is a Simulink feature that allows you to achieve faster
execution during model simulation and in generated code. When block
reduction is enabled, the Simulink software collapses certain groups of blocks
into a single, more efficient block, or removes them entirely.

When the Simulink Design Verifier software translates a model, block
reduction happens automatically, and blocks in unused code paths are
eliminated from the model. The Simulink Design Verifier results do not
include test objectives for blocks that have been reduced.

Consider the Switch block in the following model.

-

EJ ex_block_reduction_how_sldv_works EI@

File Edit View Sirmulation Format Tools Help

L EEES + »

(1 —m

In1

n—r1 —m{_1)

Outl
Constant
.
In2
Switch
Fl100% FixedStepDiscrete

For this Switch block, the control input is always 0. If the Criteria for
passing first input block parameter is u2 ~= 0, the Switch block always
passes the third input through to the output port. When you analyze this

2 How the Simulink® Design Verifier™ Software Works

model, the Simulink Design Verifier software removes the Switch block from
the model and does not report any test objectives for the Switch block.

For more information about block reduction, see “Block reduction”.

Analyzing Large Models

Analyzing Large Models

In larger, more complicated models, the Simulink Design Verifier software
uses mathematical techniques to simplify the analysis:
¢ [t identifies portions of the model that do not affect the desired objectives.

¢ [t discovers relationships within the model that reduce the complexity of
the search.

¢ [t reuses intermediate results from one objective to another.

In this way, the problem is reduced to a search though the logical values that
describe your model.

For detailed information about analyzing large models, see Chapter 14,
“Analyzing Large Models and Improving Performance”.

2-9

2 How the Simulink® Design Verifier™ Software Works

2-10

Handling Incompatibilities with Automatic Stubbing

In this section...
“What Is Automatic Stubbing?” on page 2-10

“How Automatic Stubbing Works” on page 2-10

“Analyzing a Model Using Automatic Stubbing” on page 2-13

What Is Automatic Stubbing?

Automatic stubbing allows you to analyze a model that contains objects that
the Simulink Design Verifier software does not support.

When you enable automatic stubbing option, the software considers only the
interface of the unsupported objects, not their actual behavior. This technique
allows the software to complete the analysis. However, the analysis may
achieve only partial results if any of the unsupported model elements affect
the simulation outcome.

How Automatic Stubbing Works

If you have enabled automatic stubbing, when the Simulink Design Verifier
analysis comes to an unsupported block, the software “stubs” that block. The
analysis ignores the behavior of the block, and as a result, the block output
can take any value.

Stubbing Example: Trigonometric Function Block

The Simulink Design Verifier software does not support Trigonometric
Function blocks when the Function parameter is set to acos, such as the
one in the following graphic.

- - acos/———
in_signal out_signal

dCcos

Handling Incompatibilities with Automatic Stubbing

When stubbing this block during analysis, out_signal can take any value,
with the following results.

Analysis model Result of stubbing out_signal

Design error detection | ® If a design-error objective that depends on
out_signal is proven valid, that objective

is valid for all simulations. In this case, the
stubbing did not affect the results of the analysis.

e [f a design-error objective that depends on
out_signal is falsified, the analysis cannot
create a test case. The analysis cannot determine
which input to the stubbed block produces the
output that falsifies the objective.

Test case generation | ® If a test objective that depends on the value of
out_signal is satisfied, the analysis cannot
create a test case. The analysis cannot determine
which input to the stubbed block produces the
output that satisfies the objective.

e If a test objective that depends on the value
of out_signal is unsatisfiable, there is no
simulation that can satisfy that objective. In this
case, the stubbing did not affect the results of
the analysis.

Property proving e [f a proof objective that depends on out_signal
1s proven valid, that objective is valid for all
simulations. In this case, the stubbing did not
affect the results of the analysis.

e [f a proof objective that depends on out_signal
is falsified, the analysis cannot create a
counterexample. The analysis cannot determine
which input to the stubbed block produces the
output that falsifies the objective.

2-11

2 How the Simulink® Design Verifier™ Software Works

2-12

Stubbing Example: S-Function Blocks and Function-Call

Triggers

The Simulink demo model sfcndemo_sfun_fcncall has an S-Function
block. The S-function sfun_fcncall executes the function-call subsystems f1
subsysl and f2 subsys2 on the first and second elements of the first output

port.

e

EJ sfcndemo_sfun_fencall
File Edit View Simulation Format Tools Help

(o[]S

,, L Y
heEs b= fi [Nomal Cll BB
[F—f
Constant i
Sum sfun_foncall 0
l Demux1 Ourt = 1)
z Function call Ot
Unit Delay S-Function 20 f1 subsys1 outl
ou]
g
f2 subsys2 -
Scope

matlabroot'too|box'simulink'simdemos'simfeatures\srcisfun_fencall.c I

Copyright 1920-2010 The MathWaorks, Inc.

Ready 100%

FizedStepDiscrete

-

The Simulink Design Verifier software does not support the S-Function
block, so if automatic stubbing is enabled, the analysis ignores the behavior
of the S-function. As a result, the code that triggers the two function-call
subsystems is ignored, resulting in two unsatisfiable objectives. Since the
function calls are ignored, the contents of those subsystems are effectively

eliminated from the analysis.

Handling Incompatibilities with Automatic Stubbing

Analyzing a Model Using Automatic Stubbing

This section describes a workflow for using automatic stubbing, using a
simple Simulink model as an example.

® “Checking Model Compatibility” on page 2-14

¢ “Turning On Automatic Stubbing” on page 2-15

e “Reviewing the Results” on page 2-16

® “Achieving Complete Results” on page 2-17

The following model contains a Trigonometric Function block that is not
compatible with the Simulink Design Verifier software.

-

File Edit “iew Simulation Format Tools Help

EJ ex_auto_stubbing_howe_sldv works EI@

O =EHE 2 |1D.EI |N|:urma|

A il

S aturation & rmony

atanz

Co—w -

I Trigonometric
Function
In2 G ———wH=0?
In3 Cut1
1 1
Constant Switch
Ready 100%% FixedStepDiscrete

2-13

2 How the Simulink® Design Verifier™ Software Works

2-14

Checking Model Compatibility

From the Model Editor, there are two ways to check whether a model is
compatible with the Simulink Design Verifier software:

¢ Run the Simulink Design Verifier compatibility check by selecting
Tools > Design Verifier > Check Model Compatibility.

P !

E Sirmulink Design Werifier log: ex_auto_stubbing_how_sldw_wearks @

19-0ct-2010 172723

Checking campatibility of model
'ex_auto_stubbing_howe_sldv_works'

Compiling model... done

Checking compatibility,.. done

'ey_auto_stubbing_how _sidy_works' is wiith
Simulink Design Werifier,

The model can be analyzed by Sirnulink Design Yer ifier,
It contains unsupported elements that will be stubbed
out during analysis, The results of the analysis might
be incomplete,

Save Log || Close

® Select the analysis that you want:
= Tools > Design Verifier > Detect Design Errors
= Tools > Design Verifier > Generate Tests
= Tools > Design Verifier > Prove Properties

The software first checks the compatibility of the model. If the model itself
is incompatible, for example, if it uses a variable-step solver, the analysis
cannot continue.

Handling Incompatibilities with Automatic Stubbing

If it finds incompatible elements in the model, the software analyzes
the model, and by default, stubs out the incompatible elements. The
Simulation Diagnostics Viewer also opens, listing the incompatibilities.

P =

ﬁ Simulink Design Verifier Errors: ex_auto_stubbing_how_sldv_works E'@

View Font Size

Message Source Reported By | Summary
= Design Verifier compatibility war... ex_auto_stubbing_how_sldv_wao... sldv Simulink Desig
+# Design Verifier compatibility war... TrigonometricFunction sldv Block 'ex_autc
4 i - 3

0 ex_auto_stubbing_how_sldv_waorks

Simulink Design Verifier has only partial support for some elements of the model; <
'ex_auto stubbing how sldv works' is partially compatible with Simulink Design Verifier,

m

The model can be analyzed by Simulink Design Verifier.,
It contains unsupported elements that will be stubbed
out during analysis. The results of the analysis might

hm imeneeel o e

Open] [Help] [Close

Note For more information about Simulation Diagnostics Viewer, see
“Simulation Diagnostics Viewer” in the Simulink User’s Guide.

Turning On Automatic Stubbing

Automatic stubbing is enabled by default. To change the automatic stubbing
setting, in the Configuration Parameters dialog box, on the main Design
Verifier pane, select Automatic stubbing of unsupported block and

2-15

2 How the Simulink® Design Verifier™ Software Works

2-16

functions. When you run the analysis, the software tells you that stubbing is
turned on and the analysis continues.

Reviewing the Results

If you run an analysis with automatic stubbing enabled, make sure to review
the results. In this report, generated after a test case generation analysis, you
see a table of unsupported blocks that the software encountered.

Unsupported Blocks

The following blocks are not supported by Simulink Design Verifier. Thev were
abstracted during the analysis. This can lead Simulink Design Verifier to produce
onlv partial results for parts of the model that depends on the output values of
these blocks.

Block Tspe

Trigonometric Function Trigonometry

The Summary report for the example model shows that one objective was
satisfied without generating a test case. The software cannot generate the
test case because it does not understand the operation of the Trigonometric
Function block.

Handling Incompatibilities with Automatic Stubbing

Chapter 1. Summary

Analysis Information

hodel: ex_auto_stubbing_how sldy woarks
Maode: TestiSeneration

status: Completed narmally

Analysis Time: 1s

Objectives Status

Number of Objectives: 10
Ohbjectives matisfied: 2]
Objectives Satisfied - Mo Test Case: 1

Achieving Complete Results

If your analysis does not achieve complete results because of the stubbing,
you can define custom block replacements to give a more precise definition
of the unsupported blocks. For more information:

e “Defining Custom Block Replacements” on page 4-8.

e Enter

echodemo sldvdemo_blockreplacement_unsupportedblocks

to step through the “Block Replacements for Unsupported Blocks” demo.

2-17

2 How the Simulink® Design Verifier™ Software Works

Approximations

In this section...

“Approximations During Model Analysis” on page 2-18
“Types of Approximations” on page 2-18

“Converting Floating-Point Arithmetic to Rational-Number Arithmetic ”
on page 2-19

“Linearizing Two-Dimensional Lookup Tables” on page 2-19

“Unrolling While Loops” on page 2-20

“Ensuring the Validity of the Analysis” on page 2-20

Approximations During Model Analysis

The Simulink Design Verifier software attempts to generate inputs and
parameters to achieve objectives. However, there could be an infinite number
of values for the software to search. To create reasonable limits on the
analysis, the software performs approximations to simplify the analysis. The
software records any approximations it performed in the Analysis Information
chapter of the Simulink Design Verifier HTML report.

Approximations

Simulink Design Verifier performed the following approximations during analysis.
These can impact the precision of the results generated by Simulink Design
Verifier. Please see the product documentation for further details.

Type Description

The model includes floating-point arithmetic.

1 |Rational approximation [Simulink Design Verfier approximates floating-point
arithmetic with rational number arithmetic.

Types of Approximations

Simulink Design Verifier software performs three types of approximations
when it analyzes a model:

2-18

Approximations

® “Converting Floating-Point Arithmetic to Rational-Number Arithmetic ”
on page 2-19

e “Linearizing Two-Dimensional Lookup Tables” on page 2-19

¢ “Unrolling While Loops” on page 2-20

Converting Floating-Point Arithmetic to
Rational-Number Arithmetic

The Simulink Design Verifier software simplifies the linear arithmetic of
floating-point numbers by approximating them with infinite-precision rational
numbers. The software discovers how the logical relationships between these
values affects the objectives. This analysis enables the software to support
supervisory logic that is commonly found in embedded controls designs.

If your model contains floating-point values in the signals, input values, or
block parameters, the Simulink Design Verifier software converts those
values to rational numbers before performing its analysis.

Note As a result of these approximations, Simulink Design Verifier software
does not consider the effect of round-off error, or the upper and lower bounds
of floating-point numbers.

Linearizing Two-Dimensional Lookup Tables

The Simulink Design Verifier software does not support nonlinear arithmetic.
If your model contains any 2-D Lookup Table blocks, or n-D Lookup

Table blocks where n = 2, with all of the following characteristics, the
software approximates nonlinear two-dimensional interpolation with linear
interpolation by fitting planes to each interpolation interval.

Block Characteristics
n-D Lookup Table ¢ Interpolation method parameter is Linear
block, n = 2:

e Extrapolation method parameter is Clip or
Linear

® The input and output signals both have the
floating-point data type

2-19

2 How the Simulink® Design Verifier™ Software Works

Unrolling While Loops

If your model or any Stateflow chart in your model contains a while loop,
the Simulink Design Verifier software tries to find a bound that allows the
while loop to exit. To find a bound, it unrolls the while loop and executes it
three times. If the software does not find a bound for a test case generation
analysis, it sets the number of loop iterations to 3 for the purpose of the
analysis. If you are performing a design-error detection or property-proving
analysis, the analysis terminates.

Ensuring the Validity of the Analysis

The Simulink Design Verifier software records all approximations it
performed in the Analysis Information chapter of the HTML report. (For a
description of the contents of this chapter, see “Analysis Information Chapter’
on page 13-26.)

’

Review the analysis results carefully when the software uses approximations.
Evaluate your model to identify which blocks or subsystems caused the
software to perform the approximations.

In rare cases, an approximation can result in test cases that fail to achieve
test objectives or demonstrate a design error, or counterexamples that fail
to falsify proof objectives. For example, suppose the software generates a
test case signal that should achieve an objective by exceeding a threshold; a
floating-point round-off error might prevent that signal from attaining the
threshold value.

2-20

ShortCircuiting Logic Blocks

Short-Circuiting Logic Blocks

When the Simulink Design Verifier software performs an analysis, if possible,
the software short-circuits logic blocks. When the previous inputs alone
determine the block output, the analysis ignores any remaining block inputs.
For example, if the first input to a Logical Operator block whose Operator
parameter specifies AND is false, the analysis ignores the values of the other
inputs.

Consider the following example model, with the Model coverage objectives
parameter set to Condition Decision.

.

E_l ex_short_circuit_logic_blocks_how_slduv_ warks EI@

File Edit “iew Sirnulation Format Tools Help

D EES » = |io

In

In2 Out1
—
Lagical
Operatar
Fl100%: FixedStepDiscrete

When the Simulink Design Verifier software analyzes this model for Condition
Decision coverage, the analysis can only satisfy five of six objectives for the
Logical Operator block inputs. The software cannot generate a test case for
when the third input to the Logical Operator block is false. If the second input
1s false, the third input is false, but the software ignores the third input due to
the short-circuiting. If the second input is true, the third input is never false.

2-21

2 How the Simulink® Design Verifier™ Software Works

2-22

Ensuring Compatibility
with the Simulink Design
Verifier Software

® “Checking Model Compatibility” on page 3-2

¢ “Unsupported Simulink Software Features” on page 3-9

¢ “Unsupported Stateflow Software Features” on page 3-14

e “Support Limitations for MATLAB for Code Generation” on page 3-16
¢ “Fixed-Point Support Limitations” on page 3-18

3 Ensuring Compatibility with the Simulink® Design Verifier™ Software

3-2

Checking Model Compatibility

The Simulink Design Verifier software analyzes Simulink models in order to:

¢ Detect design errors that may occur at runtime
® Generate test cases that achieve model coverage

® Prove properties and identify property violations
For these analyses, the models must:

e Compile into an executable form
® Be compatible with code generation
e Perform a zero-second simulation without error, where the simulation

start time and stop time are both 0.

The Simulink Design Verifier software supports a broad range of Simulink
and Stateflow software features in your models. However, there are features
that the product does not support, as described in the following sections.
Avoid using these particular features in models that you plan to analyze with
the Simulink Design Verifier software.

The Simulink Design Verifier software automatically checks the compatibility
of your model before it begins an analysis.

In addition, you can run a compatibility check before you start the
analysis. To run this check, in the model window, select Tools > Design
Verifier > Check Model Compatibility.

Alternatively, you can use the sldvcompat function to run the compatibility
checker programmatically at the command line or in a MATLAB program.
For more information, see the sldvcompat reference page.

There are three outcomes of a compatibility check:

¢ “Model Is Compatible” on page 3-3
e “Model Is Incompatible” on page 3-3
® “Model is Partially Compatible” on page 3-5

Checking Model Compatibility

Model Is Compatible

In the log window, you see if your model is compatible with the Simulink
Design Verifier software.

P "

E Simulink Design Verifier log: sldvderneo_cruise_control @

03-Mov-2010 09:40:23

Checking compatibility of model 'sldvdemo_cruise_contral'
Compiling model... done

Checking compatibility... done

'sldvdemo_cruise_control' is compatible with Simulink Design
Verifier.

Save Log | | Close

Model Is Incompatible

If the model itself is incompatible with the software, for example, if it uses
a variable-step solver, you see two dialog boxes:

¢ Simulink Design Verifier log

3-3

3 Ensuring Compatibility with the Simulink® Design Verifier™ Software

I)

E Simulink Design Verifier log: sldvdemo_cruise_control @

03-Mov-2010 09:52:14

Checking compatibility of model 'sldvdemo_cruise_control’
'sldvdemo_cruise_control' is incompatible with Simulink Design
Verifier.

Save Log] ’ Close

¢ Simulation Diagnostics Viewer. Use the information in this dialog box to
identify and correct the incompatibility.

Checking Model Compatibility

P

View Font Size

e Simulink Design Verifier Errors: sldvdemo_cruise_control EI@

Message Source Reported By Summary
@@ Design Verifier compatibility error sldvdemo_cruise_control simulink Simulink D
@ Design Verifier compatibility error sldvdemo_cruise_contral simulink Simulink D
1|] 3

0 sldvdemo_cruise_control

Simulink Design Verifier cannot be used with a variable-step solver. You must configure the
solver options for a fixed-step solver

Note For more information about this dialog box, see “Simulation
Diagnostics Viewer” in Simulink User’s Guide.

Model is Partially Compatible

A model is partially compatible with the Simulink Design Verifier software
if at least one object in the model is incompatible. Automatic stubbing is
enabled by default, so if you start an analysis that determines that the model
1s partially incompatible, it gives the following message, but the analysis
proceeds.

This model can be analyzed by Simulink Design Veriifer.

3-5

3 Ensuring Compatibility with the Simulink® Design Verifier™ Software

It contains unsupported elements that will be stubbed
out during analysis. The results of the analysis might
be incomplete.

If you have disabled automatic stubbing, the analysis stops. A query asks if
you want to enable automatic stubbing so that the analysis can proceed.

3-6

Checking Model Compatibility

P =

E Simulink Design Verifier log: ex_auto_stubbing_how_sldv_works @

Progress

Objectives processed 00

Satisfied 0
Falsified 0
Elapsed time 0:00

03-Mov-2010 14:17:33

Starting design error detection for model
'ex_auto_stubbing_how_sldv_works'

Compiling model... done

Translating model... done

'ex_auto_stubbing_how_sldv_waorks' is with
Simulink Design Verifier.

The model contains unsupported elements and cannot be
analyzed directly by Simulink Design Verifier

You can analyze it by turning on the

AutomaticStubbing option.

You can turn this option on and proceed to the analysis by
pressing the Continue button below.

Continue || Sawve Log || Close

Click Continue to enable automatic stubbing and proceed with the analysis.

3 Ensuring Compatibility with the Simulink® Design Verifier™ Software

Note For instructions on how to use automatic stubbing, see “Handling
Incompatibilities with Automatic Stubbing” on page 2-10.

3-8

Unsupported Simulink® Software Features

Unsupported Simulink Software Features

In this section...

“Simulink Software Features Not Supported” on page 3-9
“Simulink Block Support Limitations” on page 3-11

“Limitations of Support for Model Blocks” on page 3-12

Simulink Software Features Not Supported

The Simulink Design Verifier software does not support the following
Simulink software features. Avoid using these unsupported features in
models that you analyze with the Simulink Design Verifier software.

Not Supported Description

Variable-step solvers | The Simulink Design Verifier software supports
only fixed-step solvers. (See “Choosing a Fixed-Step
Solver” in Simulink User’s Guide.)

Callback functions The Simulink Design Verifier software does

not execute model callback functions during

the analysis. The results that the analysis
generates, such as the harness model, may behave
inconsistently with the expected behavior.

¢ [f a model or any referenced model calls a callback
function that changes any block parameters,
model parameters, or workspace variables, the
analysis does not reflect those changes.

® Changing the storage class of base workspace
variables on model callback functions or mask
Initializations is not supported.

e (Callback functions called prior to analysis,
such as the PreLoadFcn or PostLoadFcn model
callbacks, are fully supported.

3 Ensuring Compatibility with the Simulink® Design Verifier™ Software

3-10

Not Supported

Description

Model callback
functions

The Simulink Design Verifier software only supports
model callback functions if the InitFcn callback of
the model is empty.

Algebraic loops

The Simulink Design Verifier software does not
support models that contain algebraic loops.

For more information, see “Algebraic Loops” in
Simulink User’s Guide.

Masked subsystem
initialization
functions

The Simulink Design Verifier software does
not support models whose masked subsystem
initialization modifies any attribute of any
workspace parameter.

Complex signals

The Simulink Design Verifier software supports only
real signals. (For more information, see “Complex
Signals” in Simulink User’s Guide.)

Variable-size signals

The Simulink Design Verifier software does not
support variable-size signals. A variable-size signal
is a signal whose size (number of elements in a
dimension), in addition to its values, can change
during model execution.

For more information, see “Working with
Variable-Size Signals” in Simulink User’s Guide.

Arrays of buses

The Simulink Design Verifier software does not
support arrays of buses.

For more information, see “Combining Buses into an
Array of Buses” in Simulink User’s Guide

Multiword
fixed-point data

types

The Simulink Design Verifier software does not
support multiword fixed-point data types.

Nonfinite data

The Simulink Design Verifier software does not
support nonfinite data (for example, NaN and Inf)
and related operations.

Unsupported Simulink® Software Features

Not Supported

Description

Signals with nonzero
sample time offset

The Simulink Design Verifier software does not
support models with signals that have nonzero
sample time offsets.

Nonzero start times

Although Simulink allows you to specify a nonzero
simulation start time, the Simulink Design Verifier
software generates signal data that begins only at
zero. If your model specifies a nonzero start time:

¢ Ifyou do not select the Reference input model
in generated harness parameter (the default),
the harness model is a subsystem. The software
sets the start time of the harness model to 1 and
continues the analysis.

¢ [f you select the Reference input model in
generated harness parameter, a Model block
references the harness model. The software
cannot change the start time of the harness
model, so the analysis stops and you see a
recommendation to set the Start time parameter
to 0.

Models with no
output ports

The Simulink Design Verifier software only supports
models that have one or more output ports.

Simulink Block Support Limitations
The Simulink Design Verifier software provides various levels of support

for Simulink blocks:

e Fully supported

e Partially supported

® Not supported

If your model contains unsupported blocks, you can enable automatic
stubbing. Automatic stubbing considers the interface of the unsupported
blocks, but not their behavior. However, if any of the unsupported blocks

3-11

3 Ensuring Compatibility with the Simulink® Design Verifier™ Software

3-12

affect the simulation outcome, the analysis may achieve only partial results.
For details about automatic stubbing, see “Handling Incompatibilities with
Automatic Stubbing” on page 2-10.

To guarantee 100% coverage, avoid using unsupported blocks in models that
you analyze with the Simulink Design Verifier software.

Similarly, specify only the block parameters that the Simulink Design Verifier
software recognizes for blocks that it partially supports. See Chapter 16,
“Simulink Block Support”.

Limitations of Support for Model Blocks

The Simulink Design Verifier software supports the Model block, but with
the following limitations. The software cannot analyze a model that contains
one or more Model blocks if:

¢ Simulink Design Verifier software does not support protected referenced
models. Protected referenced models are encoded to obscure their contents.
This feature allows third parties to use the referenced model without
being able to view the intellectual property that makes up the model. For
more information, see “Protecting Referenced Models” in the Simulink
User’s Guide.

® The parent model or any of the referenced models gives an error when you
set one of the following model parameters in the Configuration Parameters
dialog box to error:

= Diagnostics > Connectivity > Element name mismatch

= Diagnostics > Connectivity > Mux blocks used to create bus
signals

You can use the Element name mismatch diagnostic along with
bus objects to ensure that your model meets the bus element naming
requirements imposed by some blocks.

If your model contains Mux blocks that create bus signals, refer to “Tips” in
“Mux blocks used to create bus signals” to resolve this problem.

® The Model block uses asynchronous function-call inputs.

Unsupported Simulink® Software Features

® Any of the Model blocks in the model reference hierarchy creates an
artificial algebraic loop. If this occurs, take the following steps:

1 On the Diagnostics pane of the Configuration Parameters dialog box,
set the Minimize algebraic loop parameter to error.

This ensures that Simulink reports an algebraic loop error.

2 On the Model Referencing Pane of the Configuration Parameters
dialog box, select the Minimize algebraic loop occurrences parameter.

Simulink tries to eliminate the artificial algebraic loop during simulation.
3 Simulate the model.

4 If Simulink cannot eliminate the artificial algebraic loop, highlight the
location of the algebraic loop by selecting Edit > Update Diagram.

5 Eliminate the artificial algebraic loop so that the Simulink Design
Verifier software can analyze the model. Break the loop with Unit Delay
blocks to ensure that the execution order is predictable.

For more information, see “Algebraic Loops” in Simulink User’s Guide.

3-13

3 Ensuring Compatibility with the Simulink® Design Verifier™ Software

3-14

Unsupported Stateflow Software Features

The Simulink Design Verifier software does not support the following
Stateflow software features. Avoid using these unsupported features in
models that you analyze with the Simulink Design Verifier software.

Not Supported

Description

ml namespace operator,
ml function, ml
expressions

The Simulink Design Verifier software does
not support calls to MATLAB functions or
access to MATLAB workspace variables, which
the Stateflow software allows. (See “Using
MATLAB Functions and Data in Actions” in the
Stateflow User’s Guide.)

C math functions

The Simulink Design Verifier software supports
calls to the following C math functions: abs,
ceil, fabs, floor, fmod, labs, 1dexp, and pow
(only for an integer exponent).

The software does not support calls to other C
math functions, which the Stateflow software
allows. Turning on automatic stubbing causes
the software to eliminate these functions during
the analysis. For details about automatic
stubbing, see “Handling Incompatibilities with
Automatic Stubbing” on page 2-10.

For information about C math functions in
Stateflow, see “Calling C Functions in Actions”
in the Stateflow User’s Guide.

Atomic subcharts that
call exported graphical
functions outside the
subchart

The Simulink Design Verifier software does
not support atomic subcharts that call exported
graphical functions, which the Stateflow
software allows.

For information about how exported graphical
functions, see “Exporting Chart-Level Graphical
Functions” in the Stateflow User’s Guide.

Unsupported Stateflow® Software Features

Not Supported

Description

Recursion

The Simulink Design Verifier software does
not support recursive functions, which the
Stateflow software allows you to implement
using graphical functions. (See “Using
Graphical Functions to Extend Actions” in the
Stateflow User’s Guide.) Also, the Simulink
Design Verifier software does not support
recursion that the Stateflow software allows
you to implement using a combination of event
broadcasts and function calls.

Custom C or C++ code

The Simulink Design Verifier software does
not support custom C or C++ code, which the
Stateflow software allows. (See “Building
Targets” in the Stateflow User’s Guide.)

Machine-parented data

The Simulink Design Verifier software does not
support machine-parented data (i.e., defined at
the level of the Stateflow machine), which the
Stateflow software allows. (See “Defining Data”
in the Stateflow User’s Guide.)

Textual functions with
literal string arguments

The Simulink Design Verifier software does
not support literal string arguments to textual
functions in a Stateflow chart.

3-15

3 Ensuring Compatibility with the Simulink® Design Verifier™ Software

3-16

Support Limitations for MATLAB for Code Generation

In this section...

“Unsupported MATLAB for Code Generation Features” on page 3-16

“Limitations of MATLAB for Code Generation Library Function Support”
on page 3-16

Unsupported MATLAB for Code Generation Features
The Simulink Design Verifier software does not support the following features
of the MATLAB Function block in the Simulink software and MATLAB
functions in the Stateflow software. Avoid using these unsupported features
in models that you analyze with the Simulink Design Verifier software.

Not Supported Description

Complex numbers The Simulink Design Verifier software
supports only real numbers. MATLAB for code
generation also supports complex numbers.

Characters The Simulink Design Verifier software does not
support characters, which MATLAB for code
generation allows.

C functions The Simulink Design Verifier software does
not support calls to external C functions, which
MATLAB for code generation allows.

Extrinsic functions The Simulink Design Verifier software supports
extrinsic functions only when they do not affect
the output of a MATLAB function.

Limitations of MATLAB for Code Generation Library
Function Support

The Simulink Design Verifier software provides various levels of support for
MATLAB for code generation library functions. The software either fully or
partially supports particular functions. It does not support other functions.

Support Limitations for MATLAB® for Code Generation

If your model contains unsupported functions, you can turn on automatic
stubbing, which considers the interface of the unsupported functions, but

not their behavior. However, if any of the unsupported functions affect the
simulation outcome, the analysis may achieve only partial results. For details
about automatic stubbing, see “Handling Incompatibilities with Automatic
Stubbing” on page 2-10.

To guarantee 100% coverage, avoid using unsupported MATLAB library
functions in models that you analyze with the Simulink Design Verifier
software.

Avoid using unsupported MATLAB library functions in models that you
analyze with the Simulink Design Verifier software. See Chapter 17,
“Support for Code Generation from MATLAB” for a list of the MATLAB
library functions for which the Simulink Design Verifier software provides
limited or no support.

3-17

3 Ensuring Compatibility with the Simulink® Design Verifier™ Software

Fixed-Point Support Limitations

The Simulink Design Verifier software supports fixed-point data types in
models that it analyzes, with one exception. Parameter configurations do
not support fixed-point data types. For more information about configuring
Simulink Design Verifier parameters, see Chapter 5, “Specifying Parameter
Configurations”.

For detailed information about these limitations, see “Tunable Expression
Limitations” in the Simulink® Coder™ User’s Guide.

3-18

Working with Block
Replacements

* “About Block Replacements” on page 4-2

e “Built-In Block Replacements” on page 4-4

¢ “Template for Block Replacement Rules” on page 4-7
¢ “Defining Custom Block Replacements” on page 4-8
¢ “Executing Block Replacements” on page 4-17

4 Working with Block Replacements

4-2

About Block Replacements

Using the Simulink Design Verifier software, you can define rules to replace
blocks automatically in your model. For example, you can work around a
block that is incompatible with the software by creating a rule that replaces
an unsupported Simulink block in your model with a supported block that is
functionally equivalent. Or, you can customize blocks for analysis by creating
a rule that adds constraints or objectives to particular blocks in your model.

When performing block replacements, the software makes a copy of your
model and replaces blocks in the copy, without altering your original model.
In this way, you can easily customize a model for analysis.

The Simulink Design Verifier software replaces blocks automatically in a
model using:
e Libraries of replacement blocks

® Rules that define which blocks to replace and under what conditions
You replace any block with any built-in block, library block, or subsystem.

Block replacements are extensible, allowing you to define your own libraries
of replacement blocks and custom block replacement rules. Use this capability
if you need to:

¢ Work around an incompatibility, such as the presence of unsupported
blocks in your model.

¢ Customize a block for analysis, such as:
= Adding constraints to its input signals
= Adding objectives to its output signals

= Eliminating the contents of a subsystem or Model block to simplify your
analysis

About Block Replacements

Note You can use automatic stubbing as an alternative to block replacements
in order to resolve incompatibilities. Automatic stubbing replaces unsupported
blocks with elements that have the same interface. For more information, see
“Handling Incompatibilities with Automatic Stubbing” on page 2-10.

4-3

4 Working with Block Replacements

Built-In Block Replacements

The Simulink Design Verifier software provides a set of block replacement
rules and a corresponding library of replacement blocks. Use these built-in
block replacements when analyzing models. They serve as examples that you
can examine to learn how to create your own block replacements.

The following table lists the factory default block replacement rules, available
in the matlabroot\toolbox\sldv\sldv\private folder. There are two
implementations of each factory-default block replacement rule. Rules whose
file names end with _normal.m replace blocks with Subsystem blocks. Rules
whose file names end with _configss.m replace blocks with Configurable
Subsystem blocks.

File Name Description

blkrep_rule lookup_normal.m A rule that replaces 1-D Lookup Table blocks with
an implementation that includes test objectives
for each breakpoint and interval specified by the
Vector of input values parameter.

blkrep_rule_lookup_configss.m

blkrep_rule_lookup2D_normal.m A rule that adds Test Condition/Proof Assumption
blocks to the input ports of 2-D Lookup Table
blocks. Each Test Condition/Proof Assumption
block constrains signal values to the interval
specified by the corresponding breakpoint vector.

blkrep_rule_lookup2D_configss.m

blkrep_rule mpswitch2 normal.m A rule that adds a Test Condition/Proof
Assumption block to the control input port of
Multiport Switch blocks whose Number of
inputs parameter is 2. The Test Condition/Proof
Assumption block constrains signal values to the
interval [1, 2] (or [0, 1] if the block uses zero-based
indexing).

blkrep_rule_mpswitch2_configss.m

Built-In Block Replacements

File Name

Description

blkrep_rule_mpswitch3_normal.m

blkrep_rule_mpswitch3_configss.m

A rule that adds a Test Condition/Proof
Assumption block to the control input port of
Multiport Switch blocks whose Number of
inputs parameter is 3. The Test Condition/Proof
Assumption block constrains signal values to the
interval [1, 3] (or [0, 2] if the block uses zero-based
indexing).

blkrep_rule_mpswitch4_normal.m

blkrep_rule_mpswitch4_configss.m

A rule that adds a Test Condition/Proof
Assumption block to the control input port of
Multiport Switch blocks whose Number of
inputs parameter is 4. The Test Condition/Proof
Assumption block constrains signal values to the
interval [1, 4] (or [0, 3] if the block uses zero-based
indexing).

blkrep_rule_mpswitch5_normal.m

blkrep_rule_mpswitch5_configss.m

A rule that adds a Test Condition/Proof
Assumption block to the control input port of
Multiport Switch blocks whose Number of
inputs parameter is 5. The Test Condition/Proof
Assumption block constrains signal values to the
interval [1, 5] (or [0, 4] if the block uses zero-based
indexing).

blkrep_rule_switch_normal.m

blkrep_rule_switch_configss.m

A rule that replaces Switch blocks with an
implementation that includes test objectives,
requiring that each switch position be exercised
when the values of the first and third input ports
are different.

4 Working with Block Replacements

4-6

File Name

Description

blkrep_rule_selector
IndexVecPort_normal.m

blkrep_rule_selector
IndexVecPort_configss.m

A rule that adds a Test Condition/Proof
Assumption block to the index port of Selector
blocks whose Index Option parameter is Index
vector (port). The Test Condition/Proof
Assumption block constrains signal values to an
interval whose endpoints are derived from the
values of the Selector block’s Input port size and
Index mode parameters.

blkrep_rule_selector
StartingIdxPort_normal.m

blkrep_rule_selector
StartingIdxPort_configss.m

A rule that adds a Test Condition/Proof
Assumption block to the index port of Selector
blocks whose Index Option parameter

1s Starting index (port). The Test
Condition/Proof Assumption block constrains
signal values to an interval whose endpoints are
derived from the values of the Selector block’s
Input port size, Output size, and Index mode
parameters.

The library of replacement blocks that corresponds to the factory default

rules 1s

matlabroot/toolbox/sldv/sldv/sldvblockreplacementlib.mdl

Template for Block Replacement Rules

Template for Block Replacement Rules

To help you create block replacement rules, the Simulink Design Verifier
software provides an annotated template that contains a skeleton
implementation of the requisite callbacks:

matlabroot/toolbox/sldv/sldv/sldvblockreplacetemplate.m

To create a block replacement rule, make a copy of the template and edit the
copy to implement the desired behavior for the rule you are creating. The
comments in the template provide hints about how to use each section. For a
tutorial on using the template to write custom block replacements rules, see
“Writing Block Replacement Rules” on page 4-9.

4-7

4 Working with Block Replacements

4-8

Defining Custom Block Replacements

In this section...

“Basic Workflow for Defining Custom Block Replacements” on page 4-8
“Specifying Replacement Blocks” on page 4-8
“Writing Block Replacement Rules” on page 4-9

“Example: Replacing Multiport Switch Blocks” on page 4-9

Basic Workflow for Defining Custom Block
Replacements

To replace certain blocks in your model in a way that the factory-default
block replacement rules do not handle, create custom block replacement rules
by completing the following tasks:

® “Specifying Replacement Blocks” on page 4-8

* “Writing Block Replacement Rules” on page 4-9

Specifying Replacement Blocks

A replacement block can be one of the built-in blocks in the Simulink model
library or a block in a user-created library.

In the Simulink Design Verifier software, replacement blocks have the
following restrictions:

® They must be built-in blocks or subsystems.

¢ They cannot be Model blocks, nor can they include any Model blocks.

Note A Model block cannot be a replacement block, but you can replace
Model blocks with built-in blocks or subsystems.

® They must reside in a block library that is available on your MATLAB
search path.

Defining Custom Block Replacements

e If the replacement block is a subsystem, any Inport and Outport blocks
must have the default names (In1 and Out1).

After constructing your replacement block, write a custom block replacement
rule.

Writing Block Replacement Rules

Block replacement rules have the following restrictions:

¢ The function that represents a block replacement rule must include
particular callbacks. MathWorks recommends that you use the block
replacement rule template as a starting point for writing a custom rule.
(See “Template for Block Replacement Rules” on page 4-7.)

® The function that represents a block replacement rule must be on the
MATLAB search path.

Example: Replacing Multiport Switch Blocks

¢ “Why Replace Multiport Switch Blocks?” on page 4-9
¢ “Creating the Library and Replacement Block” on page 4-10
¢ “Writing the Rule for the Replacement Block” on page 4-13

Why Replace Multiport Switch Blocks?

A Multiport Switch block has one control input port and one or more data
input ports; the default number of data inputs is 3.

fu ipo
Switch

4 Working with Block Replacements

4-10

A model may have test objectives on some blocks whose output is directly or
indirectly connected to the Multiport Switch block. For example, a Saturation
block may send data to the control input port. In this case, the analysis may
create test cases that satisfy those objectives. However, those test cases may
create values that are out of range for the control input port, regardless of
whether the Multiport Switch block uses zero-based indexing or one-based
indexing. This causes the simulation to fail.

In this example, you create a rule to replace all Multiport Switch blocks that
have two data inputs and do not use zero-based indexing. The replacement
block is a subsystem that has a Test Condition block that constrains the value
of the control input to 1 or 2, so that the analysis does not create out-of-range
data input values. This allows the analysis to satisfy the objectives on blocks
that are connected to the control input port of the Multiport Switch block.

Creating the Library and Replacement Block

Create a user library and specify the replacement block as a masked
subsystem:

1 In the Simulink Library Browser, select File > New > Library.

2 In your library, create a subsystem named myReplacementBlock to
represent your replacement block. It should look like the following graphic,
with several parameters set:

e In the Multiport Switch block, set the Number of data ports parameter
to 2.

® In the Test Condition block, set the Values parameter to {[1, 2]}.

Defining Custom Block Replacements

E Library: ex_lib_my_block_re... EI@

File Edit View Format Help

e
e
4
e
4

S
O = Ed&
In1
In2 Out
In2
» myReplacementBlodt
/, \\
4 N
2 N
Ready 100% Locked
4 A,
7’ N
\

s

/.
E Library: ex_lib_my_block_replacerment/... EI@
File Edit View Format Help
O =zEHS T =]
n. 2
@ —»
In1
) - »
In2 _ Out1
= P i
In3
Multi port
Switch
Ready 100% Locked

3 To create a mask for your subsystem, select the subsystem, right-click, and
select Edit mask from the context menu.

Specify the following information in the Mask Editor:

® In the Parameters pane, click the Add button

parameter named InputSameDT as shown.

=+ to define a mask

4-11

4 Working with Block Replacements

This parameter replicates the behavior of the Require all data port
inputs to have the same data type parameter of the underlying
Multiport Switch block.

2 Mask Editor : myReplacementBlock E\@
Icon & Ports| Parameters | Initialization | Documentation

Dialeg parameters

Prompt Variable Type Evaluate Tun.. Tab..
1 |Requilealldatapnrlinpuistnh... InputSameDT Icheckbm(vI | |

| (9] [[

Type-specific options Generic options

In dialog:

Enable parameter Show parameter
Dialog callback:

Mo type-specific options

| oK H Cancel H Help H Apply]

Note When you create mask parameters that control the behavior

of parameters associated with their underlying blocks, specify actual
parameter names as dialog box variables in the Mask Editor. For
instance, InputSameDT is the actual parameter name that controls the
Require all data port inputs to have the same data type parameter
of the Multiport Switch block; therefore, it specifies the name of the
dialog box variable in this example.

¢ In the Initialization pane, in the Initialization commands field,
enter commands to specify that the subsystem inherit the InputSameDT
parameter value of the top-level model:

maskInputSameDT = get_param(gcb, 'InputSameDT');

4-12

Defining Custom Block Replacements

blkName = sprintf('/Multiport\nSwitch');
targetBlock = [gcb, blkName];
set_param(targetBlock, 'InputSameDT',maskInputSameDT);

4 Save your block library as custom_rule.mdl in a folder on your MATLAB
search path.

Writing the Rule for the Replacement Block
To write a rule for the replacement block:

1 Open the block replacement rule template

matlabroot/toolbox/sldv/sldv/sldvblockreplacetemplate.m

2 Make a copy of the file and save it as custom_rule switch.min a folder on
your MATLAB search path.

Note Execute steps 3 through 11 for the copy of the template that you
saved.

3 To declare a function custom_rule switch and modify its help, modify
the first few lines of the template:

function rule = custom_rule_switch
%CUSTOM_RULE_SWITCH Custom block replacement rule for
the Simulink Design Verifier software

o°

o°

This block replacement rule identifies Multiport
Switch blocks whose "Number of inputs" parameter
specifies '2' and "Use zero-based indexing" parameter
specifies 'off'. It replaces such blocks with an
implementation that includes a Test Condition block
on the control input signal.

0 o° o o°

o°

The function name must match its file name, without the .m extension. The
comments that follow the function declaration create help for this rule.

4-13

4 Working with Block Replacements

4 Specify the type of block that you want to replace in your model by
specifying its BlockType parameter as the rule.blockType object. For this
example, change the rule.blockType object to 'MultiPortSwitch':

%% Target Block Type

o°

rule.BlockType = 'MultiPortSwitch’;

Note If necessary, use the get_param function to obtain the value of the
BlockType parameter for the block that you want to replace.

5 Specify the full block path name for the replacement block as the
rule.ReplacementPath object. For this example, to replace Multiport
Switch blocks with the replacement block developed in “Specifying
Replacement Blocks” on page 4-8, modify therule.ReplacementPath object
using the full block path name:

%% Replacement Library

o°

rule.ReplacementPath = sprintf('custom_rule/myReplacementBlock"');

Note To get the full block path name, use the gcb function.

6 To specify the type of subsystem that the software uses when replacing
blocks, specify a value for the rule.ReplacementMode object. Valid values
are:

e Normal — The software replaces blocks with a copy of the subsystem
specified by the rule.ReplacementPath object. This is the default.

e ConfigurableSubSystem — The software replaces blocks with a
Configurable Subsystem block. With the Configurable Subsystem
block, you can choose whether it represents the subsystem specified
by the rule.ReplacementPath object, or the original block before its
replacement.

For this example, set rule.ReplacementMode to Normal

4-14

Defining Custom Block Replacements

%% Replacement Mode

[)
)

rule.ReplacementMode = 'Normal';

7 Specify parameter values that the replacement blocks inherit from the
blocks being replaced. You achieve inheritance by mapping the parameter
names in a structure. Each field of the structure represents a parameter
that the replacement block inherits. Specify the value of each field using
the token $original.parameter$. parameter is the name of the parameter
that belongs to the original block.

To define a structure named parameter that maps the InputSameDT
parameter from the original Multiport Switch blocks to their replacement
blocks, change the content of the Parameter Handling section as follows:

%% Parameter Handling

[
“©

parameter.InputSameDT = '$original.InputSameDT$';

% Register the parameter mapping for the rule
rule.ParameterMap = parameter;

Note To determine block parameter names, refer to “Model and Block
Parameters” in the Simulink Reference.

8 To define the callback functions, keep the following lines in the file:

%% Replacement Test Callback
% Customize the subfunction 'replacementTestFunction' to specify the

o0

conditions under which Simulink Design Verifier replaces blocks when

o°

using this rule. Simulink Design Verifier replaces blocks only when this

o0

subfunction returns true.

°
)

rule.IsReplaceableCallBack = @replacementTestFunction;

%% Post Replacement Callback
% Customize the subfunction 'postReplacementFunction' to specify actions
that will be performed after a block is replaced.

o0

°
i)

4-15

4 Working with Block Replacements

4-16

% The usage of this callback in replacement rules is optional. Simulink
% design verifier does not enforce its existence in the rule definition.

%

rule.PostReplacementCallBack = @postReplacementFunction;

9 Customize replacementTestFunction by specifying conditions under
which the Simulink Design Verifier software replaces blocks in your model.

To instruct the software to replace only the Multiport Switch blocks whose
NumInputPorts parameter is 2 and whose zeroIdx parameter is off,
replace the existing replacementTestFunction with the following:

function out = replacementTestFunction(blockH)

Specify the logic that determines when the Simulink Design
Verifier software replaces a block in your model. For example,
restrict replacements to only the blocks whose parameters
specify particular values.

o® o° o o°

o°

out = false;
numInputPorts = eval(get_param(blockH, 'NumInputPorts'));
zeroldx = get_param(blockH, 'zeroIdx');
if numInputPorts==2 && strcmp(zeroldx, 'off')
out = true;
end

10 Optionally, you can customize postReplacementFunction to specify the
actions the software performs after a block has been replaced. For an
example of a postReplacementFunction, open the following file

matlabroot/toolbox/sldv/sldv/blkrep_rule_selectorIndexVecPort_normal.m

11 Save the edited file and continue to “Executing Block Replacements” on
page 4-17 to execute your replacement rule.

Executing Block Replacements

Executing Block Replacements

In this section...

“Configuring Block Replacements” on page 4-17

“Replacing Blocks in a Model” on page 4-18

Configuring Block Replacements

You must configure block replacement options before executing block

replacements in your model. To specify block replacement options from the
model window:

1 Open the sldvdemo_param_identification model.

2 Rename this model to my_sldvdemo_param_identification, and save it in
a folder on your MATLAB search path.

3 In the Model Editor, select Tools > Design Verifier > Options.

The Configuration Parameters dialog box displays the main pane of the
Design Verifier category.

4 In the Select tree of the Configuration Parameters dialog box, click the
Block Replacements category.

5 On the Block Replacements pane, select Apply block replacements to
enable block replacements.

Enabling this option provides access to the List of block replacement
rules (in order of priority) and File path of the output model options.

6 In the List of block replacement rules (in order of priority) box,
replace

<FactoryDefaultRules>
with

custom_rule_switch

4-17

4 Working with Block Replacements

to execute your custom block replacement rule.

The Simulink Design Verifier software replaces a block in your model only
once. If multiple rules apply to the same block, the software replaces the
block using the rule with the highest priority.

7 In the File path of the output model field, accept the default to create a
file named my_sldvdemo_param_identification_replacement.mdl. This
file is a copy of the original model that includes the replacement blocks.

By default, this software creates a file called

$ModelName$ replacement.mdl, where $ModelName$ is the name of the
model it is analyzing. To use a different name for the name of the model
with the block replacements, enter the file name in this field.

8 Save the my_sldvdemo_param_identification model.

Replacing Blocks in a Model

e “Replacing Blocks and Analyzing the Model with the Block Replacements”
on page 4-18

¢ “Performing the Block Replacements Only” on page 4-19

Replacing Blocks and Analyzing the Model with the Block
Replacements

After enabling the Apply block replacements option, you can start a
Simulink Design Verifier analysis that analyzes the model after executing the
block replacements. To trigger block replacements and start the analysis, do
one of the following:

® Select Tools > Design Verifier > Options, and on the Design Verifier
pane, click Generate Tests.

¢ In the Model Editor, select Tools > Design Verifier > Generate Tests.

4-18

Executing Block Replacements

Note If your model has unsaved changes, the Simulink Design Verifier
software asks if you want to save the model before executing the block
replacements.

The Simulink Design Verifier software copies your model, replaces blocks in
the copy, without altering the original model, and analyzes the model with
the replacements.

Upon completing its analysis, you can generate a detailed analysis report that
includes information about the block replacements it executed. For each block
replacement, you can follow a link from the report to the block replacement in
the model copy, saved using the name you specified on the Design Verifier >
Block Replacements pane of the Configuration Parameters dialog box.

Performing the Block Replacements Only

Replacing the blocks in a model before running the analysis can help you debug
the custom block replacement rules. Once the block replacement rules are
working as you want, analyze the model that contains the block replacements.

To perform only the block replacements, without analyzing the model with
the block replacements, at the command line or from a program, use the
sldvblockreplacement function. Set two parameters of the sldvoptions
structure related to replacing blocks, and call sldvblockreplacement as
follows:

opts = sldvoptions;

opts.BlockReplacement = 'on'

opts.BlockReplacementRulesList =
‘custom_rule_switch, <FactoryDefaultRules>';

[status, newmodelH] = sldvblockreplacement(...
'my_sldvdemo_param_identification', opts);

If you execute block replacements programmatically, in the MATLAB
Command Window, the Simulink Design Verifier software displays a table
that lists available block replacement rules and opens the copy of the model
that contains the block replacements ($Mode1lName$ replacement.mdl).

4-19

4 Working with Block Replacements

4-20

The table lists all built-in rules and any custom rules that you specified
using the List of block replacement rules (in order of priority) option
(see “Configuring Block Replacements” on page 4-17). The table includes the
following information:

® Type — Type of rule, either built-in or custom

® Registration MATLAB File name — Name of the file that expresses the rule

® Block types — BlockType parameter value of the block that the rule
replaces

® Priority — Priority of execution when multiple rules target the same type
of block for replacement

e Active — Flag that indicates whether the rule is active (1) or ignored (0)

The output also displays information about the block replacements. For
example, the output for this example indicates that the software used the
custom_rule switch.m rule to replace a Multiport Switch block (of the same
name) at the top level of the model.

Specifying Parameter
Configurations

e “About Parameter Configurations” on page 5-2
® “Defining Parameter Configurations” on page 5-3

* “Parameter Configuration Example” on page 5-8

5 Specifying Parameter Configurations

5-2

About Parameter Configurations

The Simulink Design Verifier software can treat block parameters in your
model as variables during its analysis. For example, suppose you specify a
variable that is defined in the MATLAB workspace as the value of a block
parameter in your model. You can instruct the Simulink Design Verifier
software to treat that parameter as another input variable in its analysis.
This allows you to

e Extend the results of a error detection analysis property proof to consider
the impact of additional parameter values.

® Generate comprehensive test cases for situations in which parameter
values must vary to achieve more complete coverage results (for an
example, see “Parameter Configuration Example” on page 5-8).

Defining Parameter Configurations

Defining Parameter Configurations

In this section...

“Template for Defining Parameters” on page 5-3

“Syntax for Defining Parameters” on page 5-3

Template for Defining Parameters

You define parameter configurations in a MATLAB function. The Simulink
Design Verifier software provides an annotated template that you can use as
a starting point:

matlabroot/toolbox/sldv/sldv/sldv_params_template.m

To create a parameter configuration file, make a copy of the template and
edit the copy. The comments in the template explain the syntax for defining
parameter configurations.

To associate the parameter configuration file with your model before
analyzing the model, in the Configuration Parameters dialog box, on the
Design Verifier > Parameters pane, enter the file name in the Parameter
configuration file field.

Syntax for Defining Parameters

You specify parameter configurations using a structure whose fields share the
same names as the parameters that you treat as input variables.

For example, suppose you want to constrain the Gain and Constant value
parameters, m and b, which appear in the following model:

5-3

5 Specifying Parameter Configurations

-

EJ ex_defining_param_configurations_ermwarn E'@

File Edit View Simulation Format Tools Help

[= &S b 00 [N

@meb P{ITI -:m.hE_ Convert ints . it .'{I;'

In1

. Ot
Zain

intd

b |Constant

[Variables m and b are defined in the MATLAB workspace. |

Ready 100% FixedStepDiscrete

The PreLoadFcn callback function defines m and b in the MATLAB workspace
when you open the model:

® nis set to 5.

® bisaSimulink.Parameter object of type int8 whose value is set to 5.

Defining Parameter Configurations

P

Main Callbacks History Description

E Model Properties @

Model callbacks Model pre-load function:
- PreLoadFcn™® m= 5

- PostLoadFcn

- InitFcn b = Simulink.Parameter;
- StartFeon b.DataType = "intd8';

- PauseEcn b.value = int8(3);

- ContinueFcn
~ StopFen

- PreSaveFcn
- PostSaveFcn
- CloseFcn

0K H Cancel ” Help Apply

Note If the data type of a parameter in the MATLAB workspace is struct,
Simulink Design Verifier cannot generate values for that parameter during
the analysis. However, Simulink Design Verifier can generate values for
parameters that are not structs.

In your parameter configuration file, specify constraints for m and b:

5 Specifying Parameter Configurations

5-6

params.b = int8([4 10]);
params.m {};

This file specifies:

® bis an 8-bit signed integer from 4 to 10. The constraint type must match the
type of the parameter b in the MATLAB workspace, int8, in this example.

® mis not constrained to any values.

Specify points using the S1dv.Point constructor, which accepts a single value
as its argument. Specify intervals using the S1dv.Interval constructor,
which requires two input arguments, i.e., a lower bound and an upper bound
for the interval. Optionally, you can provide one of the following strings as

a third input argument that specifies inclusion or exclusion of the interval
endpoints:

e '()' — Defines an open interval.

® '[]1' — Defines a closed interval.

e '(]' — Defines a left-open interval.
e '[)' — Defines a right-open interval.

Note By default, the Simulink Design Verifier software considers an interval
to be closed if you omit its two-character string.

The following example constrains m to 3 and b to any value in the closed
interval [0, 10]:

params.m = Sldv.Point(3);
params.b Sldv.Interval(0, 10);

If the parameters are scalar, you can omit the constructors and instead specify
single values or two-element vectors. For example, you can alternatively
specify the previous example as:

params.m = 3;
params.b = [0 10];

Defining Parameter Configurations

Note To indicate no constraint for an input parameter, specify params.m =
{} or params.m = []. The analysis treats this parameter as free input.

You can specify multiple constraints for a single parameter using a cell
array. In this case, the analysis combines the constraints using a logical
OR operation.

The following example constrains m to either 3 or 5 and constrains b to any
value in the closed interval [0, 10]:

params.m = {3, 5};
params.b [0 10];

You can specify several sets of parameters by expanding the size of your
structure. For example, the following example uses a 1-by-2 structure to
define two sets of parameters:

params(1).m = {3, 5};
params(1).b = [0 10];
params(2).m = {12, 15, Sldv.Interval(50, 60, '()')};

params(2).b = 5;

The first parameter set constrains m to either 3 or 5 and constrains b to any
value in the closed interval [0, 10]. The second parameter set constrains m to
either 12, 15, or any value in the open interval (50, 60), and constrains b to 5.

5-7

5 Specifying Parameter Configurations

Parameter Configuration Example

In this section...

“About This Example” on page 5-8

“Constructing the Example Model” on page 5-9
“Parameterizing the Constant Block” on page 5-10
“Preloading the Workspace Variable” on page 5-11
“Specifying a Parameter Configuration” on page 5-11
“Analyzing the Example Model” on page 5-12
“Simulating the Test Cases” on page 5-15

About This Example

This example describes how to create and analyze a simple Simulink model,
for which you generate test cases that achieve decision coverage. However, in
this example, achieving complete decision coverage is possible only when the
Simulink Design Verifier software treats a particular block parameter as a
variable during its analysis. This example explains how to specify parameter
configurations for use with the analysis.

The following workflow guides you through the process of completing this
example.

Task | Description See...

1 Construct the example “Constructing the Example Model” on
model. page 5-9

2 Specify a variable as the “Parameterizing the Constant Block”
value of a Constant block on page 5-10
parameter.

3 Constrain the value of the “Specifying a Parameter
variable that the Constant | Configuration” on page 5-11
block specifies.

Parameter Configuration Example

Task | Description See...

4 Generate test cases for your | “Analyzing the Example Model” on
model and interpret the page 5-12
results.

5 Simulate the test cases “Simulating the Test Cases” on page
and measure the resulting 5-15
decision coverage.

Constructing the Example Model

Construct a simple Simulink model to use in this example:

1 Create an empty Simulink model.

2 Copy the following blocks into your empty model window:
¢ From the Sources library:
= Two Inport blocks to initiate the input signals
- A Constant block to control the switch

¢ From the Signal Routing library: A Multiport Switch block to provide
simple logic

¢ From the Sinks library: An Outport block to receive the output signal

3 Double-click the Multiport Switch block to access its dialog box and specify
its Number of data ports option as 2.

4 Connect the blocks so that your model looks like this:

5 Specifying Parameter Configurations

5-10

EJ ex_defining_params_example E'@
File Edit WYiew Sirmulation Format Tools Help
O =2 EE 4
int&
A FE——
Constant 1
@duuble > o double
In1 Out
2
@duuble F* a
In2
Multiport
Switch
F125% FixedStepDiscrete

5 Select Simulation > Configuration Parameters.

6 In the Select tree on the left side of the Configuration Parameters dialog
box, click the Solver category. Under Solver options on the right side,
set the Type option to Fixed-step, and then set the Solver option to
discrete (no continuous states).

7 Click OK to apply your changes and close the Configuration Parameters
dialog box.

8 Save your model as ex_defining_params_example.mdl for use in the
next procedure.

Parameterizing the Constant Block

Parameterize the Constant block in your model by specifying a variable as the
value of the Constant block’s Constant value parameter:

Parameter Configuration Example

1 Double-click the Constant block.
2 In the Constant value box, enter A.

3 Click OK to apply your change and close the Constant block parameter
dialog box.

4 Save your model for use in the next step.

Preloading the Workspace Variable
Preload the value of the MATLAB workspace variable A referenced by the
Constant block:

1 Select File > Model Properties.
2 Click the Callbacks tab.
3 In the PreLoadFcn, enter:

A = int8(1);

When you open the model, the PreLoadFcn defines a variable A of type
int8 whose value is 1.

4 To close the Model Properties dialog box and save your changes, click OK.

5 Save your model for use in the next step.

Specifying a Parameter Configuration

Create the parameter configuration file so that it constrains the variable A,
and configure the analysis to use this file:

1 In the model window, select Tools > Design Verifier > Options.

The Simulink Design Verifier software options appear in the Configuration

Parameters dialog box.

2 In the Select tree on the left side of the Configuration Parameters dialog
box, click the Design Verifier > Parameters category.

5-11

5 Specifying Parameter Configurations

5-12

3 In the Parameters pane on the right side, select the Apply parameters
parameter.

Enabling the Apply parameters option provides access to the Parameter
configuration file option; the file name sldv_params_template.m
appears in the text box.

4 Click Edit next to the Parameter configuration file option.

The Simulink Design Verifier software opens sldv_params_template.m
in an editor.

5 Replace the existing content with the following:

function params = params_example_function
% This function defines a parameter configuration for the
% example model that the documentation discusses.

params.A = int8([1 2]);

This code defines a function params_example function that constrains
the parameter A to the int8 values 1 and 2.

6 Save your changes to the template as params_example function.m in the
same folder as the example model.

7 Close the MATLAB Editor.

8 In the Configuration Parameters dialog box, click Browse next to the
Parameter configuration file option, and then select your parameter
configuration file, params_example_function.m.

9 Click OK to apply your change and close the Configuration Parameters
dialog box.

10 Save your model for use in the next step.

Analyzing the Example Model

Analyze the model using the parameter configuration file you just created and
generate the analysis report:

Parameter Configuration Example

1 In the model window, select Tools > Design Verifier > Generate Tests.

The Simulink Design Verifier software begins analyzing your model to
generate test cases.

2 When the software completes its analysis, in the log window, select
Generate detailed analysis report.

The Simulink Design Verifier software displays an HTML report named
ex_defining_params_example_report.html.

Keep the log window open for the next procedure.

3 In the Simulink Design Verifier report Table of Contents, click Test
Cases.

4 Click Test Case 1 to display the subsection for that test case.

5-13

5 Specifying Parameter Configurations

5-14

Test Case 1

Summary

Length: 0 Seconds (1 sample periods)
Chbjective Count: 1

Objectives

Step Time Model ltem Objectives

integer input valug =1

i i . .
1 0 Multiport Switch (output is from input port 1)

Generated Parameter Values

Parameter\Malue
A, 1

Generated Input Data

Time
Step 1
Int +
In2 +

This section provides details about Test Case 1 that the Simulink Design
Verifier software generated to satisfy a coverage objective in the model. In
this test case, a value of 1 for parameter A satisfies the objective.

5 Scroll down to the Test Case 2 section in the Test Cases chapter.

Parameter Configuration Example

Test Case 2

Summary

Length: 0 Seconds {1 sample periods)
COhjective Count: 1

Objectives

Step Time Model ltem Objectives

integer input valug =*2

1 0 Multiport Switch (output is from input port 2)

Generated Parameter Values

ParameteriMalue
A, 2

Generated Input Data

Time
Step |1
Inl +
In2 +

This section provides details about Test Case 2, which satisfies another

coverage objective in the model. In this test case, a value of 2 for parameter
A satisfies the objective.

Simulating the Test Cases

Simulate the generated test cases and review the coverage report that results
from the simulation:

1 In the Simulink Design Verifier log window, select Create harness model.

The software creates and opens a harness model named
ex_defining_params_example_harness.mdl.

5-15

5 Specifying Parameter Configurations

2 The block labeled Inputs in the harness model is a Signal Builder block
that contains the test case signals. Double-click the Inputs block to view
the test case signals in the Signal Builder block.

5-16

Parameter Configuration Example

I

n Signal Builder (ex_defining_params_example_harness/Inputs)

File Edit Group Signal Axes Help o
EE| $2R oo —=T0/ETFREE » 0 os | |
J/Test Case 1 i‘i\Test Case 2 \‘\
1 T et e e |
In1 ' ' : . . ' ' ' .
.[}_5_ _______ Lo Lo [oo E ________ _E ________ de oo doo oo doo oo J:
m 1 1 1 1 E 1 1 1 1 'f’
L D S
1_ ------- i -------- L I i --------- I I I I I 1
||'|2 : 1 E 1 E 1 1 1 1 E
U_E | o | I | I, | I (R i _________ | Y Y I |
U 1 1 1 1 E 1 1 1 1 1
e T Tt i"""'"i"“"“'i""""‘.“"““‘.""""‘.
_1 i i i | i | | | | |
0 0.1 02 0.3 04 0.5 0.6 0.7 0.8 09 1
Time (sec)
LLeth Pamt Right Point -
Hame: In1 T e
Index: 1 v: Y: Y:

Click to select =ignal

O

T

In1 (#1) [¥Min YMax]

5-17

5 Specifying Parameter Configurations

5-18

all
3 In the Signal Builder dialog box, click the Run all button >

The Simulink software simulates each of the test cases In succession,
collects coverage data for each simulation, and displays an HTML report of
the combined coverage results at the end of the last simulation.

4 In the model coverage report, review the Summary section:

Summary
todel Hierarchy'Complesxity: Te=t 1
01
1. ex defining params example haress 2 100%

2. ... TestUniticopied from
ex defining params example)

1 100% S

This section summarizes the coverage results for the harness model and its
Test Unit subsystem. Observe that the subsystem achieves 100% decision
coverage.

5 In the Summary section, click the Test Unit subsystem.

The report displays detailed coverage results for the Test Unit subsystem.

Parameter Configuration Example

2. Subsystem "Test Unit {copied from
ex_defining_param..."

Parent: Fex defining params example harmess

Coverage (this Coverage (inc.

Metric object) descendants)

Cyclomatic 0 1
Complexity
100% (242 decision

Decision (D7) MA
outcomes

MultiPortSwitch hlock "Multipont Switch™

gx defining params example harmessiTest
Parent: IUnit {copied from
gx defining params example)

Metric Coverayge
Cyclomatic Complexity 1
o .
Decision (D1) 100% (2/2) decision
outcomes
Decisions analyzed:
truncated input value 100%

=1 {output is from input part 1) 2/
= "2 [output is from input port 2) 214

This section reveals that the Multiport Switch block achieves 100% decision
coverage because the test cases exercise each of the switch pathways.

5-19

5 Specifying Parameter Configurations

5-20

Detecting Design Errors

e “About Design Error Detection” on page 6-2
e “Workflow for Detecting Design Errors” on page 6-3
¢ “Detecting Design Errors in a Model” on page 6-4

6 Detecting Design Errors

6-2

About Design Error Detection

If your Simulink model performs arithmetic operations, the Simulink Design
Verifier software can analyze the model to identify design errors that might
occur at run time. The analysis detects two types of errors:

¢ Integer or fixed-point data overflow

¢ Division by zero
After the analysis is completes, you can:

¢ View the analysis results on the model

® (Create a harness model containing test cases that demonstrate the errors

¢ Create a detailed analysis report

Workflow for Detecting Design Errors

Workflow for Detecting Design Errors

To analyze your model for design errors, MathWorks recommends the
following workflow.

Task

Description

Example

1

Ensure that your model is
compatible with Simulink
Design Verifier software.

“Checking Compatibility of a
Model” on page 6-4

Specify options that control
how Simulink Design Verifier
detects design errors in your
model.

Chapter 15, “Simulink®
Design Verifier Configuration
Parameters”

Execute the Simulink Design
Verifier analysis.

“Analyzing the Model” on page
6-5

Review the analysis results.

“Reviewing the Analysis
Results” on page 6-5

6 Detecting Design Errors

Detecting Design Errors in a Model

In this section...

“About This Example” on page 6-4
“Checking Compatibility of a Model” on page 6-4
“Analyzing the Model” on page 6-5

“Reviewing the Analysis Results” on page 6-5

About This Example

The following sections describe how to analyze the
sldvdemo_cruise_control_fxp_fixed model for any data overflow or
division-by-zero errors.

Checking Compatibility of a Model

Every time Simulink Design Verifier analyzes a model, before the analysis
begins, the software performs a compatibility check. If your model is not
compatible, the software cannot analyze it.

Before you start the analysis, you can verify that your model is compatible
with Simulink Design Verifier software.

For this example, verify if the sldvdemo_cruise_control_fxp_fixed demo
model is compatible with the Simulink Design Verifier software by taking
these steps:

1 Open the model:

sldvdemo_cruise_control_fxp_fixed

2 Select Tools > Design Verifier > Check Model Compatibility.

The Simulink Design Verifier log window shows that
sldvdemo_cruise_control_ fxp_fixed model is compatible with
Simulink Design Verifier.

Detecting Design Errors in a Model

If your model is not compatible, seeChapter 3, “Ensuring Compatibility with
the Simulink® Design Verifier Software”. This chapter has information about
the Simulink and Stateflow software features that are not supported by
Simulink Design Verifier.

Analyzing the Model

Once your Simulink model is compatible with Simulink Design Verifier
software, start the analysis. To run a design error detection analysis, in the
model window, select Tools > Design Verifier > Detect Design Errors.

When you run a design error detection analysis, the software highlights the
model with the analysis results. The Simulink Design Verifier Results dialog
box opens and displays a summary of the analysis.

Reviewing the Analysis Results

After the design error detection analysis is complete, the software highlights
the sldvdemo_cruise control fxp_fixed model to reflect the analysis
results. The Fixed-Point Controller subsystem is outlined in red. This
outlining indicates that the analysis found data overflow or division-by-zero
errors in some objects inside the subsystem.

6 Detecting Design Errors

-

EJ sldvderno_cruise_control_fxp_fixed E'@

File Edit VYiew Simulation Format Tools Help

Lz EE

Simulink Design Verifier
Fixed-Point Cruise Control: Fixed

throt ;@

InputBusFxp
InBus

InBus
fixif_End
target
target
Fixed-Point Controller
Copyright 2008-2010 The MathWorks, Inc.
F100% T=0.00 FixedStepDiscrete

When the analysis is complete, the Simulink Design Verifier Results window
initially displays a summary of the analysis results. The analysis detected
design errors in four objects in the sldvdemo_cruise_control_ fxp_fixed

model. The analysis also identified test cases containing signals that generate
those errors.

Detecting Design Errors in a Model

Simulink Design Verifier Results

= = ~ G
Close results

Design error detection completed normally

4 of 8 objectives proven valid

4 of & objectives falsified

Results:

* Generate detailed analysis report
* Create harness model

From Simulink Design Verifier Results window, you can create a detailed
analysis report or create a harness model containing test cases that generate

the errors that the analysis detected. For more information about those
options, see:

e “Reviewing the Analysis Report” on page 6-12
® “Reviewing the Harness Model” on page 6-11

Tip By default, the Simulink Design Verifier Results window is always the

top-most visible window. To change that setting, click the 8% icon and on the
context menu, clear the check mark next to Always on top.

There are several ways to view the results of the design error detection
analysis.

To... See

Review the results in the model “Reviewing the Results on the

window by clicking analyzed objects | Model” on page 6-8
in the model.

See the test cases containing “Reviewing the Harness Model” on
the signals that demonstrate the page 6-11
detected errors.

6 Detecting Design Errors

To... See

Review detailed results about the “Reviewing the Analysis Report” on
analysis. page 6-12

Review the latest analysis results “Reviewing Analysis Results in the
after you have closed them, without | Model Explorer” on page 6-12
rerunning the analysis.

Reviewing the Results on the Model

When you run a design error detection analysis, by default, the software
highlights the model so that the analysis results are easy to review. When
you click an object in the model, the Simulink Design Verifier Results window
gives additional details about the results for that object.

Model Obiject Analysis Results

Highlighting

Color

Green Overflow or division-by-zero errors are not possible in
this model.

Red Test cases found that demonstrate overflow or
division-by-zero errors.

Orange Could not determine if there were any overflow or

division-by-zero errors. Occurs when:

¢ The analysis times out

e The software cannot determine if an error occurs or
not. This result is due to:

= Automatic stubbing errors; for more information,
see “Handling Incompatibilities with Automatic
Stubbing” on page 2-10.

= Limitations of the analysis engine

When you click a highlighted object in your model, the Simulink Design
Verifier Results window displays information about the signal bounds of any
block Outports. The signal bounds can help you understand the source of an

6-8

Detecting Design Errors in a Model

error by identifying the possible signal values, as you can see by taking the
following steps:

1 At the top level of the sldvdemo_cruise control fxp_ fixed model, click
the Fixed-Point Controller subsystem.

The Simulink Design Verifier Results window displays the range of possible
signal values for the Outports, as calculated by the analysis:

® The values of Outport 1 (throt) range from —2.6101 to 2.6096.

¢ The values of Outport 2 (target) range from 0 to 256.

Simulink Design Yerifier Results

= = it

Back to summary - Close results
sldvdemo_cruise_control_fxp_fived /Fixed-Point Controller

Signal bounds:

Outport 1: [-2.6101, 2.6096]
Cutport 2: [0, 256]

2 Click the Outport blocks of the sldvdemo_cruise_control fxp_ fixed
model to see the same signal bound values.

3 Open the Fixed-Point Controller subsystem.

Four objects in this subsystem are outlined in red. The PI Controller
subsystem is outlined in green.

4 (Click the Sum block, outlined in red, that provides the error input to the PI
Controller subsystem.

6 Detecting Design Errors

6-10

error throt|-

Pl Controller

This Sum block can produce an overflow error. The analysis found a test
case that can result in a computation where the output of the Sum block
exceeds the range [-128 128].

Simulink Design Verifier Results
= = - 53
Back to summary - Close results
sldvdemo_cruise_control_fxp_fixed /Ficed-Point Controller/Sumi
Overflow ERROR - View test case

Signal bounds:
Cutport 1: [-123, 128]

5 To understand this error better, click the two blocks that provide the inputs
to the Sum block. In the Simulink Design Verifier Results window, view
their signal bounds:

® The third Outport from the Bus block has a range of [0 256].
® The Outport from the Switch block has a range of [0 256].

You can see that the sum operation for these signal ranges can compute a
value that exceeds the bounds [-128 128] for the Outport of the Sum block.

Simulink Design Verifier reports the overflow error on the Sum block, but
does not propagate this error. The analysis assumes that the Sum block
output is within the valid range for any subsequent computations.

Detecting Design Errors in a Model

6 Click the PI Controller subsystem, outlined in green. None of the blocks
in the PI Controller subsystem can produce overflow or division-by-zero

errors. The Simulink Design Verifier Results window displays the signal
bounds for the Outport: [-2.6101, to 2.6096].

When Simulink Design Verifier analyzes the PI Controller subsystem,

it ignores the overflow error from the Sum block, and assumes that the
inputs to the subsystem are valid.

Simulink Design Verifier Results
= =
Back to summary - Close results

sldvdemo_cruise_control_fxp_fixed /Fixed-Point Controller/PI
Controller

~ B

Signal bounds:
Outport 1: [-2.6101, 2.6096]

Keep the sldvdemo _cruise control fxp fixed model open. In the next

section, you create the harness model to see the test case that generates the
Sum block overflow error.

Reviewing the Harness Model

To see the test cases that demonstrate the errors, generate the harness model
from the Simulink Design Verifier Results window:

1 In the sldvdemo_cruise_control_fxp_fixed model, open the Fixed-Point
Controller subsystem.

2 Click the Sum block, outlined in red, that provides the error input to the PI
Controller subsystem.

The Simulink Design Verifier Results window indicates that an overflow
error occurred.

6-11

6 Detecting Design Errors

6-12

3 In the Simulink Design Verifier Results window, click View test case.

The software creates a harness model containing the test case with the
signal values that cause this overflow error.

The Signal Builder dialog box in the harness model opens, with Test Case
2 displayed.

4 Click Play to simulate the model with this test case.

As expected, the simulation fails due to an overflow error at the Sum block
in the Fixed-Point Controller subsystem.

For more information, see “Harness Model” on page 13-13.

Reviewing the Analysis Report

To view an HTML report containing detailed information about the analysis
report for the sldvdemo_cruise_control fxp_fixed model:

1 In the Simulink Design Verifier Results window, to redisplay the results
summary, click Back to summary.

2 Click Generate detailed analysis report.

The software generates a detailed analysis report that opens in a browser.

For the sldvdemo_cruise_control_fxp_fixed model, the Design Error
Detection Objectives Status chapter of the report provides detailed results
in two categories:

® Objectives Proven Valid — Model objects that did not have any errors
* Objectives Falsified with Test Cases — Model objects for which test

cases generated errors
For more information, see “Simulink® Design Verifier Reports” on page 13-25.
Reviewing Analysis Results in the Model Explorer

If you close the analysis results so that you can fix the cause of the errors in
your model, you might need to review the analysis results again. As long

Detecting Design Errors in a Model

as your model remains open, you can view the results of your most recent
Simulink Design Verifier analysis results in the Model Explorer. After you
close your model, you can no longer view any analysis results.

In the model window, select Tools > Design Verifier > Latest Results.
The Model Explorer opens, and the results of the latest Simulink Design
Verifier analysis appear in the right-hand pane.

For any Simulink Design Verifier analysis, from the Model Explorer, you can

perform any of the following tasks.

Task

More information

Highlight the analysis results on the
model.

“Highlighted Results on the Model”
on page 13-2

Generate a detailed analysis report.

“Simulink® Design Verifier Reports”
on page 13-25

Create the harness model, or if the
harness model already exists, open
it.

If no objectives are falsified, this
option is not available.

“Harness Model” on page 13-13

View the data file.

“Simulink® Design Verifier Data
Files” on page 13-5

View the log file.

“Simulink® Design Verifier Log
Files” on page 13-48

6-13

6 Detecting Design Errors

6-14

Generating Test Cases

® “About Test Case Generation” on page 7-2
* “Workflow for Generating Test Cases” on page 7-4

® “Generating Test Cases to Achieve Decision Coverage for a Model” on
page 7-5

® “Generating Test Cases for a Subsystem” on page 7-23

7 Generating Test Cases

About Test Case Generation

The Simulink Design Verifier software can generate test cases that satisfy
coverage objectives for your model, including:

¢ Decision coverage

¢ Condition coverage

® Modified condition and decision coverage (MC/DC)

Test cases help you confirm that a model performs correctly by demonstrating
how its blocks execute in different modes. When generating test cases, the

software performs a formal analysis of your model. After completing the
analysis, the software offers several ways for you to review the results.

Test Case Blocks

The Simulink Design Verifier software provides two blocks for customizing
test cases for your Simulink models:

¢ The Test Objective block defines the values of a signal that a test case
must satisfy.

¢ The Test Condition block constrains the values of a signal during analysis.

Test Case Functions

The Simulink Design Verifier software provides two MATLAB functions to
customize test cases for a Simulink model or Stateflow chart. You can use
these functions in a MATLAB Function block. Both functions are active in
generated code and in Simulink Design Verifier.

® sldv.test — Specifies a test objective

® sldv.condition — Specifies a test condition
These functions:

¢ [dentify mathematical relationships for testing in a form that can be more
natural than using block parameters.

About Test Case Generation

® Support specifying multiple objectives, assumptions, or conditions without
complicating the model.

® Provide access to the power of MATLAB.
® Support separation of verification and model design.

For an example of how to use these functions, see the sldv.test or
sldv.condition reference page.

Note Simulink Design Verifier blocks and functions are saved with a model.
If you open the model on a MATLAB installation that does not have a
Simulink Design Verifier license, you can see the blocks and functions, but
they do not produce any results.

7-3

7 Generating Test Cases

Workflow for Generating Test Cases

To generate test cases for your model, MathWorks recommends the following

workflow.

Task

Description

For an example, see

1

Ensure that your model is
compatible for use with the
Simulink Design Verifier
software.

“Checking Compatibility of the
Example Model” on page 7-7.

Optionally, instrument your
model with blocks or MATLAB
functions that specify test
objectives and test conditions.

“Customizing Test Generation”
on page 7-18).

Specify options that control
how Simulink Design Verifier
generates test cases for your
model.

“Configuring Test Generation
Options” on page 7-8.

Execute the Simulink Design
Verifier analysis.

“Analyzing the Example Model”
on page 7-9 and “Reanalyzing
the Example Model” on page
7-21.

Review the analysis results.

“Reviewing the Analysis
Results” on page 7-10

Generating Test Cases to Achieve Decision Coverage for a Model

Generating Test Cases to Achieve Decision Coverage for a
Model

In this section...

“Constructing the Example Model” on page 7-5

“Checking Compatibility of the Example Model” on page 7-7
“Configuring Test Generation Options” on page 7-8
“Analyzing the Example Model” on page 7-9

“Reviewing the Analysis Results” on page 7-10
“Customizing Test Generation” on page 7-18

“Reanalyzing the Example Model” on page 7-21

“Analyzing Contradictory Models” on page 7-22

Constructing the Example Model
Construct a model to use in this example:

1 Create a new Simulink model.

2 Copy the following blocks into your empty model window:

* From the Sources library, an Inport block to initiate the input signal
whose value the Simulink Design Verifier software controls

® From the Sources library, two Constant blocks to serve as Switch block
data inputs

®* From the Signal Routing library, a Switch block to provide simple logic

® From the Sinks library, an Outport block to receive the output signal

3 In your model, double-click one of the Constant blocks and specify its
Constant value parameter as 2.

4 Connect the blocks so that your model appears similar to the following
diagram.

7 Generating Test Cases

P =

EJ ex_generate_test_cases_example E'@
File Edit VYiew Simulation Format Tocols Help
O S - »
1
Constant
—h—‘_
O—»
In1 — Ot
Switch
2
Constant?
F125% oded

5 In the model window, select Simulation > Configuration Parameters.

6 On the left side of the Configuration Parameters dialog box, in the Select
tree, click the Solver category. On the right side, under Solver options:

e Set the Type option to Fixed-step.

® Set the Solver option to Discrete (no continuous states).

The Simulink Design Verifier can analyze only models that use a fixed-step
solver.

7 Click OK to save your changes and close the Configuration Parameters
dialog box.

8 Save your model with the name ex_generate_test_cases_example.mdl.

Generating Test Cases to Achieve Decision Coverage for a Model

Checking Compatibility of the Example Model

Every time Simulink Design Verifier analyzes a model, before the analysis
begins, the software performs a compatibility check. If your model is not
compatible, the software cannot analyze it.

You can also make sure that your model is compatible with Simulink Design
Verifier software before you start the analysis:

1 Open the ex_generate_test_cases_example model.

2 In the model window, select Tools > Design Verifier > Check Model
Compatibility.

The Simulink Design Verifier software displays the log window, which
states whether or not your model is compatible for analysis.

The model you just created is compatible.

7 Generating Test Cases

.-)

E Simulink Design Verifier log: ex_generate_test_cases_example @

18-0Oct-2010 10:13:03

Checking compatibility of model 'ex_generate_fest_cases_example'
Compiling model... done

Checking compatibility... done

'ex_generate_test_cases_example' is compatible with Simulink
Design Verifier.

| Save Log || Close

What If a Model Is Partially Compatible?

If the compatibility check indicates that your model is partially compatible,
your model contains at least one object that the Simulink Design Verifier
software does not support. You can analyze a partially compatible model,
but, by default, the unsupported objects are stubbed out. The results of the
analysis might be incomplete.

For detailed information about automatic stubbing, see “Handling
Incompatibilities with Automatic Stubbing” on page 2-10.

Configuring Test Generation Options

Configure the Simulink Design Verifier software to generate test cases that
achieve 100% decision coverage for the ex_generate_test _cases_example
model:

Generating Test Cases to Achieve Decision Coverage for a Model

1 Open the ex_generate test cases_example model.
2 In the model window, select Tools > Design Verifier > Options.

3 On the left side of the Configuration Parameters dialog box, in the Select
tree, click the Design Verifier category. Under Analysis options, set the
Mode option to Test generation.

4 On the left side of the Configuration Parameters dialog box, in the Select
tree, click the Test Generation category.

5 On the Test Generation pane, set the Model coverage objectives
parameter to Decision.

For this example, the analysis generates test cases that record only
decision coverage.

Note The Test suite optimization parameter is set by default to
CombinedObjectives. If you want to generate fewer but longer test cases,
select LongTestcases for the Test suite optimization parameter.

6 Click OK to save your changes and close the Configuration Parameters
dialog box.

7 Save the ex_generate_test cases_example model.

Analyzing the Example Model

To analyze the ex_generate test cases_example model, in the model
window, select Tools > Design Verifier > Generate Tests. The Simulink
Design Verifier software begins analyzing your model to generate test cases.

During the analysis, the log window shows the progress of the analysis. It

displays information such as the number of test objectives processed and
which objectives are satisfied.

7-9

7 Generating Test Cases

Reviewing the Analysis Results

When the software completes its analysis, the log window displays the
following options for reviewing the results:

P =

ﬂ Simulink Design Verifier log: ex_generate_test cases_example @

Progress R

Objectives processed 2/2

Satisfied 2
Falsified 0
Elapsed time 0:01

Test generation completed normally.
All 2 objectives satisfied.

Results:

* Highlight analysis results on model

* Generate detailed analvsis report

* Create harness model

* Simulate tests and produce a model coverage report

Data saved in: ex_generate test cases example sldvdata.mat
in folder: C:\SLDV'\sldv output'ex generate test cases example

View Log H Close

The following sections describe how you can review the analysis results:

® “Reviewing the Results on the Model” on page 7-11

7-10

Generating Test Cases to Achieve Decision Coverage for a Model

¢ “Reviewing the Detailed Analysis Report” on page 7-13

¢ “Reviewing the Harness Model” on page 7-14

e “Simulating Tests and Producing a Model Coverage Report” on page 7-16
¢ “Viewing the Data File” on page 7-17

® “Reviewing Analysis Results in the Model Explorer” on page 7-17

Reviewing the Results on the Model
Highlight the analysis results on the example model:

1 In the log window for the ex_generate_test_cases_example analysis,
click Highlight analysis results on model.

F =

EJ ex_generate_test_cases_example E@

File Edit Wiew Simulation Format Tools Help

O = EH& = 2 »
1
Constant

(N
CO—»i -

In1 Ot
—n
2
Constant?
F125% T=0.00 oded

7-11

7 Generating Test Cases

The Switch block is outlined in green, which indicates that the Switch
block has test cases that satisfy its test objectives.

The Simulink Design Verifier Results window appears. As you click objects

in the model, this window changes to display detailed analysis results for
that object.

P

41 Simulink Design Verifier Results EI@

== - 5
Close results

Test generation completed normally
all 2 objectives satisfied,

Results:
* Generate detailed analysis report

* Create harness model
* Simulate tests and produce a model coverage report

Tip By default, the Simulink Design Verifier Results window is always
the top-most visible window. To allow the window to move behind other
window, click @ and clear Always on top.

2 Click the highlighted Switch block.

The Simulink Design Verifier Results window indicates that the analysis
generated test cases for both test objectives:

® trigger >= threshold
® trigger < threshold

7-12

Generating Test Cases to Achieve Decision Coverage for a Model

o

Y
Back to summary - Close results
ex_generate_test_cases_example/Switch

trigger == threshold false (outputis from 3rd input SATISFIED - View test case
port)

L. Simulink Design Verifier Results o @ ==
- 9

trigger == threshold true (output is from 1stinput SATISFIED - View test case
port)

For more information about highlighted analysis results on a model, see
“Highlighted Results on the Model” on page 13-2.

Reviewing the Detailed Analysis Report
Create a detailed HTML analysis report:

1 In the Simulink Design Verifier log window, click Generate detailed
analysis report.

The HTML report opens in a browser window.

2 The report includes the following Table of Contents. Click a hyperlink to
navigate to a section in the report.

Table of Contents

1. Summary

2. Analysis Infarmation
3. Test Objectives Status
4 Model ltems

5 Test Cases

3 In the Table of Contents, click Summary to display the report’s Summary
chapter.

7-13

7 Generating Test Cases

The Summary chapter lists information about the model and the status
of the objectives—satisfied or not.

4 In the Table of Contents, click Analysis Information to display the
Analysis Information chapter.

The Analysis Information chapter provides information about:
® The model that you analyzed
¢ The options that you specified for the analysis

® Approximations the software performed during the analysis

5 In the Table of Contents, click Test Objectives Status to display the
report’s Test Objectives Status chapter.

This table indicates that the analysis satisfied both test objectives
associated with the Switch block in the ex_generate test cases_example
model, for which it generated two test cases.

6 Under the table Test Case column, click 2 to display the Test Case 2
section.

This section provides details about a test case that the analysis generated to
achieve an objective in your model. This test case achieves test objective 1,
when the Switch block passes its third input to its output port. Specifically,
the software determines that a value of —1 for the Switch block control
signal causes the block to pass its third input as the block output.

For more information about the HTML reports, see “Simulink® Design
Verifier Reports” on page 13-25.

Reviewing the Harness Model

To create a harness model with test cases that satisfy the test objectives
in your model, in the Simulink Design Verifier log window, click Create
harness model.

The software creates a harness model named
ex_generate_test_cases_example_harness.mdl.

7-14

Generating Test Cases to Achieve Decision Coverage for a Model

e

File Edit View Simulation Format Tools Help

EJ ex_generate_test_cases_example_harness EI@

Ready 100% FixedStepDiscrete

O = &S <2 P = [0.200.. |Nomal I
Size-Type
Test Case 1
% Int In Outt |—{_ 1)
Ot
Inputs Test Unit (copied from ex_generate_test cases_example)
[
DoC
Text
Test Case Explanation

The Signal Builder block named Inputs contains the test cases. Double-click
the Inputs block to see the test cases. From the Signal Builder block, you
can simulate the model using the test cases and produce a model coverage
report, as described in “Simulating Tests and Producing a Model Coverage
Report” on page 7-16.

For more information about the harness model, see “Harness Model” on
page 13-13.

If the Analysis Generates Many Test Cases. If you have a large model,

the analysis might produce a harness model that contains a large number
of test cases.

To perform a more efficient analysis and create easier-to-review results that
are combined into a smaller number of longer test cases:

1 Set the Test suite optimization parameter to LongTestcases.

2 Rerun the analysis.

7-15

7 Generating Test Cases

7-16

In the LongTestcases optimization, the analysis generates fewer but longer
test cases that each satisfy multiple test objectives.

Simulating Tests and Producing a Model Coverage Report

To simulate the harness model using the generated test cases in the harness
model:

1 In the harness model, double-click the Inputs block to open the Signal
Builder dialog box.

-

Signal Builder (ex_generate_test cases_example_harness/Inputs) EI@
b=

File Edit Group Signal Axes Help

BEH| 2R oo | =TT RERr 1o

] Test Case 1 \{\Test Case 2 \

1

0.5

Name: |n1

Index: 1 -

4 |[m 3

Click to select =ignal | In1 (#1) [Y Min ¥Ma

il

2 In the Signal Builder dialog box, click the Run all button s L

Generating Test Cases to Achieve Decision Coverage for a Model

The software simulates the harness model using both test cases, collects
model coverage information, and displays a coverage report. The coverage
report indicates that the test cases record 100% decision coverage for the
ex_generate_test cases_example model.

You can also simulate the model without creating a harness model. In the
Simulink Design Verifier log window, click Simulate tests and produce
a model coverage report.

For more information about model coverage, see “Validating Your Model with
Model Coverage” in the Simulink Verification and Validation User’s Guide.

Viewing the Data File

The Simulink Design Verifier data file is a MAT-file that contains a structure
named sldvData. This structure stores all the data that the analysis gathers
and produces during the analysis. Although the software displays the same
data graphically in the harness model and report, you can use the data file to
conduct your own analysis or to generate a custom report.

To view the data file, click the data file name in the log window, in this
example, ex_generate_test_cases_example_sldvdata.mat. When you click
the file name, a copy of the sldvData object is instantiated in the MATLAB
workspace so that you can review and manipulate the data.

For more information about Simulink Design Verifier data files, see
“Simulink® Design Verifier Data Files” on page 13-5.

Reviewing Analysis Results in the Model Explorer

If you close the analysis results so you review any unsatisfiable objectives, you
may need to review the analysis results again. As long as your model remains
open, you can view the results of your most recent Simulink Design Verifier
analysis results in the Model Explorer. After you close your model, you can
no longer view any analysis results.

In the model window, select Tools > Design Verifier > Latest Results.

The Model Explorer opens, and the results of the latest Simulink Design
Verifier analysis appear in the right-hand pane.

7-17

7 Generating Test Cases

7-18

For any Simulink Design Verifier analysis, from the Model Explorer, you can

perform any of the following tasks.

Task

For more information

Highlight the analysis results on the

model.

“Highlighted Results on the Model”
on page 13-2

Generate a detailed analysis report.

“Simulink® Design Verifier Reports”
on page 13-25

Create the harness model, or if the
harness model already exists, open
it.

If no test cases were generated
during the analysis, this option is
not available.

“Harness Model” on page 13-13

View the data file.

“Simulink® Design Verifier Data
Files” on page 13-5

View the log file.

“Simulink® Design Verifier Log
Files” on page 13-48

Customizing Test Generation

Customize the test-generation analysis by using the Test Condition block to
constrain signals in your model to certain values during the analysis.

1 In the MATLAB Command Window, enter sldvlib to display the Simulink

Design Verifier library.

2 Open the Objectives and Constraints sublibrary.

3 Copy the Test Condition block to your model by dragging it from the
Simulink Design Verifier library to your model window.

4 In the model window, insert the Test Condition block between the Inport

and Switch blocks.

Generating Test Cases to Achieve Decision Coverage for a Model

-

EJ ex_generate_test_cases_with_tc_block E'@
File Edit Wiew Sirmulation Format Tools Help
O = S = »
1
Constant
true _..—_
—»
In1 —l Ot
Switch
2
Constant?
F125% oded

5 Double-click the Test Condition block to access its attributes.
The Test Condition block parameters dialog box opens.

6 In the Values box, enter [-0.1, 0.1]. When generating test cases for this
model, the analysis constrains the signal values, entering the Switch block
control port to the specified range.

7-19

7 Generating Test Cases

P "

E Function Elock Pararmeters: Test Condition @
Design Verifier Test Condition (mask) (link)

Constrains signal values in Simulink Design Verifier test cases. The
"Walues' parameter constrains the block input signal. Two element
vectors specify intervals. Cell arrays specify lists. The signal must
satisfy at least one of the values or intervals at every time step.
Example Values:

true

{[01], 2, [4 5], 6}

{Sldv.Interval(-2, -1}, Sldv.Point(0), Sldv.Interval(0, 1, '()"), 1}

Parameters

Enable

Type ’Test Condition -

Values

[-0.1, 0.1]

Display values
Pass through style (show Outport)

0K H Cancel ” Help ” Apply

7 Click OK to save your changes and close the Test Condition block
parameters dialog box.

8 Save your model as ex_generate_test cases with_tc block and keep
it open.

7-20

Generating Test Cases to Achieve Decision Coverage for a Model

Reanalyzing the Example Model

Analyze the ex_generate_test cases with_tc_block model with the

Test Condition block. To observe how the Test Condition block affects test
generation, compare the result of this analysis to the result that you obtained
in “Analyzing the Example Model” on page 7-9.

1 In the model window, select Tools > Design Verifier > Generate Tests.

The Simulink Design Verifier software displays a log window and begins
analyzing your model to generate test cases. When the software completes
the analysis, the log window displays the options for reviewing the results.

2 In the Simulink Design Verifier log window, click Generate detailed
analysis report.

3 To begin reviewing the report, in the Table of Contents, click Summary.

The Summary chapter indicates that the Simulink Design Verifier software
satisfied two test objectives in the model.

4 In the Table of Contents, click Analysis Information. Scroll to the
bottom of this chapter, to the Constraints section.

This section lists the Test Condition block that you added to constrain the
value of the Switch block control signal to the interval [-0.1, 0.1].

5 In the Table of Contents, click Test Objectives Status.

This table indicates that the Simulink Design Verifier software satisfied
both test objectives associated with the Switch block in your model, for
which it generated two test cases.

6 Under the table Test Case column, click 1.

This section provides details about a test case that the software generated
to achieve an objective in your model. This test case achieves test objective
1, when the Switch block passes its third input to its output port. Although
the Test Condition block restricts the domain of input signals to the
interval [-0.1, 0.1], the software determines that a value of —0.1 for the
Switch block control signal satisfies this objective.

7-21

7 Generating Test Cases

7-22

7 To confirm that the test case achieves 100% decision coverage, open the
harness model.

8 Double-click the Inputs block to open the Signal Builder dialog box.

all
9 In the Signal Builder dialog box, click the Run all button - .

The Simulink software simulates the harness model using both test cases,
collects model coverage information, and displays a coverage report. The
Summary section of the report indicates that the Simulink Design Verifier
software generated test cases that achieve complete decision coverage for
your example model.

Analyzing Contradictory Models

If the analysis produces the error The model is contradictory in its
current configuration, the software detected a contradiction in your model
and cannot analyze the model.

You might have a contradiction if your model has Test Objective blocks with
incorrect parameters. For example, a contradiction can be an objective that
states that a signal must be between 0 and 5 when the signal is the constant
10.

If the software detects a contradiction, all previous results are invalidated
and the software reports that some of the objectives cannot be satisfied.

Generating Test Cases for a Subsystem

Generating Test Cases for a Subsystem

If you have a large model, you can generate test cases for subsystems in the
model and review the analysis in smaller, manageable reports. The workflow
for generating test cases for a subsystem 1is:

1 Open the model that contains the subsystem.
2 Make the subsystem atomic.

3 Run the Simulink Design Verifier software using the Generate Tests for
Subsystem option.

4 Review the results.

The tutorial in “Analyzing a Subsystem” on page 1-30 describes how to analyze
the Controller subsystem in the Cruise Control Test Generation model.

7-23

7 Generating Test Cases

7-24

Extending Existing Test
Cases

®* “When to Extend Existing Test Cases” on page 8-2
¢ “Common Workflow for Extending Existing Test Cases” on page 8-3

e “Example: Extending Existing Test Cases for a Model that Uses Temporal
Logic” on page 8-4

e “Example: Extending Existing Test Cases for a Closed-Loop System” on
page 8-11

e “Example: Extending Existing Test Cases for a Modified Model” on page
8-14

8 Extending Existing Test Cases

8-2

When to Extend Existing Test Cases

The Simulink Design Verifier software can analyze your model, using any
previously generated test cases that you specify. You can use this feature
with the following situations:

® You encounter delays trying to analyze your model, or you see incomplete
results. These situations can arise if your model has any of the following
characteristics:

= Temporal logic
= Large counters
= Model objects that are difficult to test due to complex or nonlinear logic

Analyzing the model and considering the existing test cases allows you to
focus the analysis on those parts of the model that are difficult to analyze.
You can combine the generated test cases to create a complete test suite
for the full model.

For an example of extending existing test cases for a model that uses
temporal logic, see “Example: Extending Existing Test Cases for a Model
that Uses Temporal Logic” on page 8-4.

® You have a closed-loop simulation model that uses a Model block to include
the controller. First, log the data from the Model block and then analyze
the model referenced by the Model block. Using this technique, the test
cases for the controller can realistically reflect the continuous time behavior
expected in the closed-loop system.

For an example of extending existing test cases for a closed-loop system,
see “Example: Extending Existing Test Cases for a Closed-Loop System”
on page 8-11.

® You change an existing model for which you have already generated test
cases . In this situation, you can reanalyze the model, omitting the analysis
results from the original version of the model. The combined test cases give
you a complete test suite for the new model.

For an example of extending existing test cases for modified models, see
“Example: Extending Existing Test Cases for a Modified Model” on page
8-14.

Common Workflow for Extending Existing Test Cases

Common Workflow for Extending Existing Test Cases

MathWorks recommends the following workflow for extending existing test
cases during a test-generation analysis:

e (Create the starting test cases.
® Log the starting test cases.
e Extend the existing test cases during test-generation analysis.

e Verify that you have created a complete test suite.

The following examples use some or all of these tasks when extending existing
test cases during analysis.

8 Extending Existing Test Cases

Example: Extending Existing Test Cases for a Model that
Uses Temporal Logic

In this section...

“Creating a Starting Test Case” on page 8-4
“Logging the Starting Test Case” on page 8-7
“Extending the Existing Test Cases” on page 8-8

“Verifying the Analysis Results” on page 8-10

Creating a Starting Test Case

This example uses the sldvdemo_sbr_extend design model. This model
includes a Stateflow chart SBR that uses temporal logic. The transition from
the KEY_OFF state to the KEY_ON state occurs after the Stateflow chart has
been simulated 500 times. To test this transition requires a test case with
500 time steps.

In this example, you create a test case that forces the transition to KEY_ON by
setting the KEY input to 1 for the duration of the test case. You simulate the
model using this test case, satisfying the objectives for the KEY_OFF/KEY_ON
transition. Then you analyze the model, ignoring the objectives already
satisfied by the test case you create.

1 Open the demo model:

sldvdemo_sbr_extend_design

2 Open the SBR Stateflow chart to see the KEY_OFF/KEY_ON transition.

Example: Extending Existing Test Cases for a Model that Uses Temporal Logic

KEY OFF
SeatBeltlcon=0;

[after(500 tickj] va ‘? KEY == 0]

|
ﬂ\’_@l\l

3 Create a model reference harness model:

[~, harnessModelFilePath] = sldvmakeharness('sldvdemo_sbr_extend_design',[],[],true);

The harness model, sldvdemo_sbr_extend_design_harness, includes:

® A Model block named Test Unit that references the original model,
sldvdemo_sbr_extend_design.

fstl'-.-clam:- shr_extend clasi:_m\'
™ inputs SeatBeltlcon |-
by W
Test Lnit

® A Signal Builder block named Inputs that contains the test-case inputs
to the model referenced in the Model block.

Inpuls Speed —

npuls . SaatBaliFasten —

Inputs . KEY —

Input=s

Initially, the Signal Builder block contains only the default test case,
with all three inputs set to 0.

¢ A DocBlock block named Test Case Explanation that documents the
test case.

8-5

8 Extending Existing Test Cases

LOC

Text

Test Casa Explanation

Initially, the Test Case Explanation block does not have any content for
the default test case.

4 sldvmakeharness returns the path to the harness model file in
harnessModelFilePath. Extract the name of the harness model file into
harnessModel, for later use:

[~, harnessModel] = fileparts(harnessModelFilePath);

In order to analyze the KEY_OFF to KEY_ON state transition, create a test case
that makes the transition to the KEY_ON state in 500 time steps:

1 Open the Signal Builder dialog box for the harness model.
2 Select Axes > Change Time Range.

3 The Signal Builder’s time range determines the span of time over which its
output is explicitly defined. In the Set the total time range dialog box, set
the Max time field to 5 seconds, creating 500 time steps of 0.01 seconds
duration each.

4 Set the KEY input to 1 for the duration of this starting test case, forcing the
transition to the KEY_ON state. Selecting the Inputs.KEY signal requires
two clicks. First, click the signal so that dots appear at both ends of the

signal.
1 """" r====== T-T===== QI====== [aA======7 ======= ======= r=====- r====== T=T===== a
Inputs. KEY ' ' ' ' ' ' ' !
04 : : : : : : : : : &
1 i i i i i i i i i i
L] 0.5 1 1.5 2 25 3 3.5 4 4.5 5

8-6

Example: Extending Existing Test Cases for a Model that Uses Temporal Logic

5 Click the Inputs.KEY signal again. The Signal Builder thickens the signal
to indicate that it is selected.

[

=
=
=
in
-
m
- 4
- |

_——m——ad
I |

o
o
in
) I

£
[
) I
5
i
Ui B

i
25 3
Time {sec)

M — - - - - - -

1.5

6 At the bottom of the Signal Builder dialog box, under Left Point, enter
1 for Y.

7 Press Enter to apply the change.
The Inputs.KEY signal is set to 1 for the duration of the test case.

8 Close the Signal Builder dialog box.

Logging the Starting Test Case

The next step is to log the starting test case that you created. You can then
specify that the Simulink Design Verifier software ignore the objectives
satisfied by that test case when performing an analysis.

The sldvlogsignals function records the test case data in a MAT-file that
contains an sldvData structure. This structure stores all the data that the
software gathers and produces during the analysis.

To log the starting test cases:

1 Save the name of the Model block in the harness model that references the
sldvdemo_sbr_extend_design model:

[~, modelBlock] = find_mdlrefs(harnessModel, false);

2 Simulate the model referenced by the Model block using the new test case,
and log the input signals in the workspace variable 1oggeddata:

8 Extending Existing Test Cases

8-8

loggeddata = sldvlogsignals(modelBlock{1});

3 Save the logged data in a MAT-file named existingtestcase.mat:

save('existingtestcase.mat', 'loggeddata');

You will specify this file when you analyze the
sldvdemo_sbr_extend_design model.

Extending the Existing Test Cases

You can now analyze the sldvdemo_sbr_extend_design model and specify
that the analysis extend the test cases already satisfied. The analysis uses
the existing test-case data as a starting point, and does not try to generate
test cases for the KEY_OFF to KEY_ON transition in the SBR Stateflow chart.

Specify the starting test case and analyze the model:

1 In the model window for sldvdemo_sbr_extend design, select
Tools > Design Verifier > Options.

2 In the Configuration Parameters dialog box, on the Select pane, under
Design Verifier, select Test Generation.

3 On the Test Generation pane, under Existing test cases, select Extend
existing test cases.

4 In the Data file field, enter the name of the MAT-file that contains the
logged data:

existingtestcase.mat

5 Clear Ignore objectives satisfied by existing test cases.

When you clear this option, the software includes the starting test case
in the final test suite. You will see that the complete test suite achieves
100% model coverage.

6 To close the Configuration Parameters dialog box, click OK.

7 Save the sldvdemo_sbr_extend_design model on the MATLAB path with
the name sldvdemo_sbr_extend_design_test.

Example: Extending Existing Test Cases for a Model that Uses Temporal Logic

8 In the Model Editor, select Tools > Design Verifier > Generate Tests.

The log window first lists the objectives that the starting test case satisfied.

E Simulink Design Verifier log: sldvdemo_sbr_extend_design_test

Progress I

Objectives processed 11/37

Satisfied 11
Falsified 0
Elapsed time 0:04

10-MNow-2010 14:26:56

Starting test generation for model 'sldvdemo_sbr_extend_design_test'
Compiling model... done

Translating model... done

'sldvdemo_sbr_extend_design_test' is compatible with Simulink Design
Verifier.

Loading initial test data...

SATISFIED
SBR
Chart: Substate executed State "KEY _OFF"

SATISFIED
SBR."[after(500,tick)]"
Transition: Transition trigger expression F

SATISFIED
SBR."[after(500,tick)]"
Transition: Transition trigger expression T

SATISFIED
SBR.KEY_OMN."[SeatBeltFasten == 1]"
Transition: Transition trigger expression F

=)

-

8-9

8 Extending Existing Test Cases

The log window then lists the objectives generated beyond the starting
test case.

Verifying the Analysis Results

To make sure that this analysis creates a complete test suite, generate the
harness model so you can simulate the model with the generated test cases:

1 In the log window, click Create harness model.

2 In the harness model sldvdemo_sbr_extend design_test_harness, open
the Signal Builder block named Inputs.

3 To simulate the model using all the test cases, click the Run all and
all
produce coverage button .

When the simulation is complete, the model coverage report is displayed.

4 View the coverage information for the sldvdemo_sbr_extend design test
model to see that the complete test suite achieves 100% coverage.

Summary
WModel Hierarchy/Complexity: Test 1
g
1. sldvdeme sbr ewtend detign test 21 100%
2. ...5BR 20 100% I
3., SF: SBR 12 100% I
4ol SF: KEY ON 12 100% mE—
B SF: 5B UNFASTEM 8 100% DS
i SF: HIGH SPEED 4 100% S

8-10

Example: Extending Existing Test Cases for a Closed-Loop System

Example: Extending Existing Test Cases for a Closed-Loop

System

In this section...

“Logging a Starting Test Case” on page 8-11

“Extending the Existing Test Cases” on page 8-12

Suppose that you have a model with a closed-loop controller in a model
referenced by a Model block. You do not record 100% coverage for the
referenced model. Extending existing test cases can help you achieve
100% coverage. The Simulink Design Verifier software adds time steps to
the existing test cases when analyzing the controller implemented by the
referenced model. The test cases that result from the analysis realistically
reflect the continuous time behavior expected in the closed-loop controller.

A closed-loop controller passes instructions to the controlled system and
receives information from the environment as the control instructions
execute. The controller can adapt and change its instructions as it receives
this information.

Logging a Starting Test Case

This example uses the sldemo_mdlref_ bus model. The CounterA Model block
references the model sldemo_mdlref counter_bus. If you simulate the

parent model, sldemo_mdlref bus, and collect coverage, you record only 75%
coverage for sldemo_mdlref counter_bus. Log the data from the simulation
and extend those test cases to achieve 100% coverage for the referenced model.

To create the starting test case, simulate the top-level model and log the input
signals to the Model block:

1 Open the demo model:

sldemo_mdlref_bus

2 Simulate the sldemo _mdlref bus model and log the input signals for the
CounterA Model block:

8-11

8 Extending Existing Test Cases

8-12

logged _data = sldvlogsignals('sldemo_mdlref_bus/CounterA');
3 Save the logged data in a MAT-file named existingtestcase.mat:
save('existingtestcase.mat', 'logged_data');

When you analyze the model referenced in CounterA
(sldemo_mdlref_counter_bus), you specify this MAT-file.

Extending the Existing Test Cases

Analyze the sldemo_mdfref counter_bus model, specifying that the analysis
extend the test cases already satisfied:

1 To open the sldemo _mdfref counter_bus model, in the
sldemo_mdlref_bus model, double-click the CounterA Model block.

2 In the Model Editor for sldemo_mdlref_counter_bus, select
Tools > Design Verifier > Options.

3 In the Configuration Parameters dialog box, on the Select pane, under
Design Verifier, select Test Generation.

4 On the Test Generation pane, under Existing test cases, select Extend
existing test cases.

5 In the Data file field, specify the name of the MAT-file that contains the
logged data, in this case, existingtestcase.mat.

6 Clear Ignore objectives satisfied by existing test cases.

When you clear this option, the software includes the test cases recorded in
the file existingtestcase.mat in the final test suite.

7 To save these settings, click Apply.

8 To open the main Design Verifier pane, on the Select pane, click Design
Verifier.

9 To start the analysis, click Generate Tests.

The analysis first loads the nine objectives satisfied by the logged test
cases. Then it adds extra time steps to those test cases and tries to satisfy

Example: Extending Existing Test Cases for a Closed-Loop System

any missing objectives. In this example, the analysis satisfies three
additional objectives.

10 To verify the results of the analysis, review the Simulink Design Verifier
report. The analysis found test cases that satisfy all 12 test objectives for
the referenced model sldemo_mdlref counter_bus.

Objectives Satisfied

Simulink Design Verifier found test cases that exercise these test objectives.

Type lModel ltem Description Test Case
- . logical trigger input false
! Decision Switch (output is from 3rd input port) |=
5 Decision Switch !ngical trigg_er input true {output 2
E— is from 1st input port) =
. - logical trigger input false
3 Decision finit (output is from 3rd input port) |=
4 Decision limit !Dgn:al trlgg_er input true {output 2
— is from 1st input port) =
5 Condition And Logic: input port 1T 2
6 Condition And Logic: input port 1 F 2
7 Condition And Logic: input port 2T 2
8 Condition And Logic: input port 2 F 2
. Logic: MCDC expression for
2 Mede And output with input port 1T 2
. Logic: MCDC expression for
10 |Mede And output with input port 2T 2
) Logic: MCDC expression for
1 |Mede And output with input port 1 F 2
) Logic: MCDC expression for
12 Mcdc And output with input port 2 F 2

8-13

8 Extending Existing Test Cases

8-14

Example: Extending Existing Test Cases for a Modified

Model

In this section...

“Creating Starting Test Cases” on page 8-14

“Extending the Existing Test Cases” on page 8-15

Suppose that you have a model that you have already analyzed using the
Simulink Design Verifier software, and you modify the model. The original
test suite may not record 100% coverage for the modified model. Reanalyze
the modified model to make sure that it satisfies all the new test objectives.
Instead of reanalyzing the entire model, you focus the new analysis on just the
modified part of the model. In this way, you leverage the test cases created for
the original model, extending them to satisfy any new objectives.

This example uses the sldvdemo _cruise control model. You analyze the
model and generate test cases. Then you analyze a modified version of
that model, sldvdemo_cruise control mod, extending the test cases from
the original analysis. The analysis returns a complete test suite for the
new model.

Creating Starting Test Cases

Analyze the sldvdemo_cruise control model and generate test cases that
achieve 100% coverage.

1 Open the demo model:

sldvdemo_cruise_control

2 To start a Simulink Design Verifier analysis for the
sldvdemo_cruise_control model, double-click the Run Simulink Design
Verifier block:

Example: Extending Existing Test Cases for a Modified Model

Run
(double-click)

Run Simulink Design Verifier

The analysis satisfies 34 test objectives for the sldvdemo_cruise_control
model. The software stores the resulting data file in a subfolder of the
MATLAB Current Folder:

sldv_output\sldvdemo_cruise_control\sldvdemo_cruise_control_sldvdata.mat

In the next section, when you analyze the modified model, this data file
specifies the starting test cases that you extend.

3 Close the sldvdemo_cruise_control model and all the files created by the
analysis. If asked, do not save any changes you made to the model.

Extending the Existing Test Cases

The sldvdemo_cruise_control_mod model is a modified version of
sldvdemo_cruise_control. The Controller subsystem contains a Saturation
block that specifies that the target speed cannot exceed 70.

Open the modified model and analyze it, extending the test cases that you
generated when analyzing the sldvdemo _cruise_control model:

1 Open the demo model, the modified version of sldvdemo _cruise control:

sldvdemo_cruise_control_mod

2 Double-click the Controller subsystem to see the change to the original
model, a Saturation block that specifies the maximum speed:

8-15

8 Extending Existing Test Cases

8-16

;__Tir gﬁhﬁpeecl

—

YVYy

Saturation

3 Close the Controller subsystem.
4 Select Tools > Design Verifier > Options.

5 In the Configuration Parameters dialog box, on the Select pane, under
Design Verifier , select Test Generation.

6 On the Test Generation pane, under Existing test cases, select Extend
existing test cases.

7 In the Data file field, click Browse and navigate to the MAT-file created
in the MATLAB Current Folder when analyzing the original model:

sldv_output\sldvdemo_cruise_control\sldvdemo_cruise_control_sldvdata.mat

8 Clear Ignore objectives satisfied by existing test cases.

When you clear this option, the analysis includes the test cases recorded in
the file sldvdemo_cruise_control sldvdata.mat in the final test suite.

9 Click Apply to save these settings.

10 To open the main Design Verifier pane, on the Select pane, click Design
Verifier.

11 To start the analysis, click Generate Tests.

The analysis first loads the 34 objectives satisfied by the initial test cases.
Then it adds extra time steps to those test cases and tries to satisfy any
missing objectives.

12 In the log window, click Generate detailed analysis report.

Example: Extending Existing Test Cases for a Modified Model

The analysis satisfied a total of 38 satisfied objectives for the
sldvdemo_cruise control mod model. The analysis satisfied four
additional objectives that correspond to the Saturation block.

Objectives Satisfied

Simulink Design Verifier found test cases that exercise these test objectives,

Test

[Type Model ltem Description Case

logical trigger input
1 |Decision |Controller/Switch false (output is from 3
Srd input port)

logical trigger input

2 |Decision |ControllerSwitchl true {output is from 1st |1
input port)

3 |Decision |Controller/Saturation input = lower limit F il

4 |Decision |Controller/Saturation input = lower limit T 3

5 |Decision |Controller/Saturation input == upper limit F |1

£ |Decision |Controller/Saturation input == upper limit T 10

8-17

8 Extending Existing Test Cases

8-18

Achieving Test Cases for
Missing Model Coverage

“Generating Test Cases for Missing Coverage Data” on page 9-2

“Example: Achieving Missing Coverage in a Referenced Model” on page 9-3

“Achieving Missing Coverage for Subsystems and Model Blocks” on page 9-7

“Example: Achieving Missing Coverage in a Closed-Loop Simulation
Model” on page 9-8

9 Achieving Test Cases for Missing Model Coverage

Generating Test Cases for Missing Coverage Data

If you simulate your model and record model coverage data, but your model
does not achieve 100% coverage, the Simulink Design Verifier software can
find test cases that achieve the missing coverage. The software can target the
test-generation analysis for the part of the model that is missing coverage,
ignoring the model coverage data that was recorded during simulation.

The following examples describe how to focus the test-generation analysis on
a part of the model that did not achieve 100% coverage:
¢ “Example: Achieving Missing Coverage in a Referenced Model” on page 9-3

¢ “Example: Achieving Missing Coverage in a Closed-Loop Simulation
Model” on page 9-8

Example: Achieving Missing Coverage in a Referenced Model

Example: Achieving Missing Coverage in a Referenced

In this section...

“Recording Coverage Data for the Model” on page 9-3
“Finding Test Cases for the Missing Coverage” on page 9-5
“Achieving the Missing Coverage” on page 9-6

“Verifying 100% Model Coverage” on page 9-6

This example uses a demo model with a referenced model that does not
achieve full coverage. When you run a test-generation analysis on the
referenced model, and combine it with the previously recorded coverage data,
you can achieve 100% for the referenced model.

Recording Coverage Data for the Model
Simulate the model, recording Condition, Decision, and MCDC coverage:

1 Open the demo model:

sldemo_mdlref_basic

The Model block, CounterA, references the model sldemo_mdlref counter.

2 To specify the coverage options that you want, select Tools > Coverage
Settings.

The Coverage Settings dialog box opens to the Coverage tab.

3 On the Coverage tab, set the following options:

® To specify that the simulation record coverage for the referenced model
and the parent model, select Coverage for referenced models.

® (Click Select Models. Make sure that you select the referenced model,
sldemo_mdlref_counter.

9 Achieving Test Cases for Missing Model Coverage

9-4

pr

@ Select Models for Coverage Analysis

4 |1 sidemo_mdiref_basic
v H sldemo_mdlref_counter
" H sldemo_mdlref_counter
H sldemo_mdlref_counter

¢ To specify which types of coverage to record during simulation, under
Coverage metrics, select:

= Decision
= Condition
- MCDC

4 Click the Results tab.

5 To specify a unique name for the coverage data workspace variable, in the
cvdata object name field, enter covdata_original.

6 Click the Reporting tab.

7 To specify that the simulation create a coverage report, select Generate
HTML report.

8 To save the settings and close the Coverage Settings dialog box, click OK.

9 Click Simulate ? to simulate the sldemo_mdlref basic model and record
the coverage data.

After the simulation, the coverage report opens. The report indicates
that the following coverage is achieved for the referenced model
sldemo_mdlref_counter:

® Decision: 75%
e Condition: 75%
e MCDC: 50%

Example: Achieving Missing Coverage in a Referenced Model

Summary
Model
Hierarchy/Complexity: Test1
D1 Cc1 MCDC
1. gldemo _mdiref courter 3 25% mm 20% 0%

10 The simulation saves the coverage data in the MATLAB workspace variable
covdata_original, a cvdata object that contains the coverage data. Save
the coverage data in a file on the MATLAB path:

cvsave('existingcov',covdata_original);

Finding Test Cases for the Missing Coverage

To achieve 100% coverage for the sldemo_mdlref_counter model, run a
test-generation analysis that uses the existing coverage data:

1 Open the referenced model using the following command:

open_system('sldemo_mdlref_counter');

2 Create an sldvoptions object:
opts = sldvoptions;
To create the sldvoptions object, you need to specify:

¢ That the analysis ignore satisfied coverage data.

¢ The file name containing the satisfied coverage data (existingcov.cvt)
To specify these options, enter the following commands:

opts.IgnoreCovSatisfied = 'on';
opts.CoverageDataFile = 'existingcov.cvt';

3 Analyze the referenced model, sldemo_mdlref_counter, using the
specified options:

[status, fileNames] = sldvrun('sldemo_mdlref_counter',opts,true);

9 Achieving Test Cases for Missing Model Coverage

The Simulink Design Verifier analysis satisfies three additional objectives
and creates one test case for the referenced model.

The next section simulates the referenced model, sldemo_mdlref counter,
using the test case that the analysis created.

Achieving the Missing Coverage

To achieve the missing coverage for the referenced model,
sldemo_mdlref_counter, simulate the model using the test case from the
Simulink Design Verifier analysis:

1 Create a cvtest object for the simulation and specify to record Decision,
Condition, and MCDC coverage:

cvt = cvtest('sldemo_mdlref_counter');
cvt.settings.decision = 1;
cvt.settings.condition = 1;
cvt.settings.mcdc = 1;

2 Simulate the model using the cvtest object, cvt, and the test case, as
defined in fileNames.DataFile. Save the recorded coverage data in the
workspace variable covdata_missing.

[~, covdata_missing] = sldvruntest('sldemo_mdlref_counter', fileNames.DataFile, [], cvt);

Verifying 100% Model Coverage

You saved the coverage data from the simulation of the top-level model,
sldemo_mdlref basic in the workspace variable covdata original.
To create a report that combines the coverage data from the top-level
model with the missing coverage data from the referenced model,
sldemo_mdlref counter, enter the following command:

cvhtml('Coverage Summary', covdata_original, covdata_missing);

The report shows that by analyzing the referenced model, and using those
results to record coverage, you can achieve 100% coverage.

9-6

Achieving Missing Coverage for Subsystems and Model Blocks

Achieving Missing Coverage for Subsystems and Model

Blocks

If your model has a Subsystem block that does not achieve full coverage, you
can convert it to model referenced in a Model block. “Converting a Subsystem
to a Referenced Model” describes how to convert a subsystem to a referenced
model. You can then follow the steps described in “Example: Achieving
Missing Coverage in a Referenced Model” on page 9-3.

However, some subsystems cannot be converted to Model blocks. To

test a subsystem to see if it can be converted to a Model block, use the
Simulink.SubSystem.convertToModelReference function. If that function
cannot convert the subsystem, an error message explains why the conversion
failed.

In addition, you may have a Stateflow chart or a MATLAB Function block
that does not achieve full coverage. Stateflow charts and MATLAB Function
blocks cannot be converted to referenced models.

For situations when you cannot use a Model block, follow steps similar to
the steps described in the following section, “Example: Achieving Missing
Coverage in a Closed-Loop Simulation Model” on page 9-8.

9 Achieving Test Cases for Missing Model Coverage

Example: Achieving Missing Coverage in a Closed-Loop
Simulation Model

In this section...

“Recording Coverage Data for the Model” on page 9-8

“Finding Test Cases for Missing Coverage” on page 9-10

If you have a subsystem or a Stateflow chart that does not achieve 100%
coverage, and you do not want to convert the subsystem or chart to a Model
block, this example can help you achieve full coverage.

The example uses a closed-loop controller model. A closed-loop controller
passes instructions to the controlled system and receives information from
the environment as the control instructions are executed. The controller can
adapt and change its instructions as it receives this information.

The sldvdemo_autotrans model is a closed-loop simulation model. The
ShiftLogic Stateflow chart represents the controller part of this model.
Test cases designed in the ManeuversGUI Signal Builder block drive the
closed-loop simulation.

Recording Coverage Data for the Model

To simulate the model, recording Condition, Decision, and MCDC coverage
for the ShiftLogic controller:

1 Open the demo model:

sldvdemo_autotrans

2 To designate the coverage settings that you want, select Tools > Coverage
Settings.

The Coverage Settings dialog box opens at the Coverage tab.

3 To specify that the simulation record coverage, select Coverage for this
model: sldvdemo_autotrans.

Example: Achieving Missing Coverage in a Closed-Loop Simulation Model

4 To specify to record coverage for the ShiftLogic chart, click Select
Subsystem.

5 In the Subsystem Selection dialog box, select ShiftLogic and click OK.

6 Under Coverage Metrics, select the types of coverage that you want the
simulation to record:

e Decision
¢ Condition

e MCDC
7 Uncheck the other coverage metrics if they are checked.
8 Click the Results tab.

9 To specify a unique name for the coverage data workspace variable, in the
cvdata object name field, enter covdata_original_controller.

10 Click the Reporting tab.

11 To specify that the simulation create a coverage report, select Generate
HTML report.

12 To save these settings and close the Coverage Settings dialog box, click OK.

13 Click Simulate ® to simulate the sldvdemo_autotrans model and record
the coverage data.

After the simulation, the coverage report opens. The report indicates that
the following coverage is achieved for the ShiftLogic Stateflow chart:

® Decision: 87%

¢ Condition: 67%

e MCDC: 33%

9 Achieving Test Cases for Missing Model Coverage

Summary
Model Hierarchy/Complexity: Test1

D1 c1 MCDC
1. ShiftLogic 22 7% o G7% —— 33% =
2. ... 5F ShiftLogic 21 B7% oo G7% S 33% mm
3o SF: gear state 9 853% m—— MA A
4., SF: selection state 12 §7% o G7% .. 33% =

14 The simulation saves the coverage data in the MATLAB workspace
variable covdata_original controller, a cvtest object that contains the
coverage data. Save the coverage data in a file on the MATLAB path:

cvsave('existingcov',covdata_original_controller);

Finding Test Cases for Missing Coverage

To find the missing coverage for the ShiftLogic chart, run a subsystem
analysis on that block. Use this technique to focus your analysis on an
individual part of the model.

To achieve 100% coverage for the ShiftLogic controller, run a test-generation
analysis that uses the existing coverage data.

1 To analyze the ShiftLogic chart, the model must use a fixed-step solver.
Select Simulation > Configuration Parameters and on the Solver
pane:

* For Type, select Fixed-step.

® For Solver, select discrete (no continuous steps).

2 To analyze just the ShiftLogic block and specify that the analysis ignore
the coverage data already recorded, right-click the ShiftLogic block and
select Design Verifier > Options.

3 In the Configuration Parameters dialog box, on the Select pane, under the
Design Verifier category, select Test Generation.

9-10

Example: Achieving Missing Coverage in a Closed-Loop Simulation Model

4 On the Test Generation pane, under Existing coverage data, select
Ignore objectives satisfied in existing coverage data.

5 In the Coverage data file field, enter the name of the file containing the
coverage data that you recorded during simulation:

existingcov.cvt

6 To save these settings, click Apply.
7 On the Select pane, click Design Verifier.
8 On the main Design Verifier pane, click Generate Tests for Subsystem.

The analysis extracts the Stateflow chart into a new model named
ShiftLogicO. The analysis analyzes the new model, ignoring the coverage
objectives previously satisfied and recorded in the existingcov.cvt file.

9 When the test-generation analysis is complete, select View detailed
analysis report.

The Simulink Design Verifier report lists six test cases for the extracted
model that satisfy the objectives not covered in the existingcov.cvt file.

9-11

9 Achieving Test Cases for Missing Model Coverage

9-12

Note The Simulink Design Verifier report indicates that two coverage
objectives in the Stateflow chart ShiftLogic are proven unsatisfiable. Since
the ShiftLogic chart updates at every time step, the implicit event tick is
never false. The analysis cannot satisfy condition or MCDC coverage for
either instance of the temporal event after (TWAIT, tick).

after(TWAIT, tick) is semantically equivalent to

Event == tick && temporalCount(tick) >= TWAIT

If you move after (TWAIT, tick) into the condition, as in

[after (TWAIT, tick) && speed < down_th]

the Simulink Design Verifier software determines that tick is always true,
so i1t only tests the temporalCount (tick) >= TWAIT part of after (TWAIT,
tick). The analysis is able to find test objectives that satisfy Condition
and MCDC coverage for after (TWAIT, tick).

Verifying Model
Components

e “What Is Component Verification?” on page 10-2
® “Functions for Component Verification” on page 10-4

¢ “Example: Verifying a Component for Code Generation” on page 10-6

1 0 Verifying Model Components

What Is Component Verification?

In this section...

“Component Verification Approaches” on page 10-2

“Using Simulink® Design Verifier Tools for Component Verification” on
page 10-2

Component Verification Approaches

Component verification allows you to test a design component in your model
using one of two approaches:

e Within the context of the model that contains the component —
Using systematic simulation of closed-loop controllers requires that you
verify components within a control system model. Doing so allows you
to test the control algorithms with your model. This approach is called
system analysis.

¢ As standalone components — For a high level of confidence in the
correctness of the component algorithm, verify the component in isolation
from the rest of the system. This approach is called component analysis.

Verifying standalone components provides three advantages:

= You can use analysis to focus on portions of the design that you cannot
test because of the physical limitations of the system being controlled.

= You can use this approach for open-loop simulations to test the plant
model without feedback control.

= You can use this approach when the model is not yet available or when
you need to simulate a control system model in accelerated mode for
performance reasons.

Using Simulink Design Verifier Tools for Component
Verification

By isolating the component to verify and using tools that the Simulink Design
Verifier software provides, you create test cases that allow you to expand

the scope of the testing for large models. This expanded testing helps you
accomplish the following:

10-2

What Is Component Verification?

® Achieve 100% model coverage — If certain model components do not record
100% coverage, the top-level model cannot achieve 100% coverage. By
verifying these components individually, you can create test cases that
fully specify the component interface, allowing the component to record
100% coverage.

® Debug the component — To ensure that each model component satisfies
the specified design requirements, you can create test cases that verify that
specific components perform as designed.

® Test the robustness of the component — To ensure that a component
handles unexpected inputs and calculations properly, you can create test
cases that generate data. Then, test the error-handling capabilities in
the component.

10-3

1 0 Verifying Model Components

10-4

Functions for Component Verification

The Simulink Design Verifier software provides several functions that
facilitate the tasks associated with component verification.

Task

Function

Simulate a Simulink model and log input signals to
a Model block in the model. If you modify the test
cases in the Signal Builder harness model, use this
approach for logging input signals to the harness
model itself.

sldvlogsignals

Create a harness model for a component, using
logged input signals if specified, or using the
default signals.

For more information about harness models, see
“Harness Model” on page 13-13.

sldvmakeharness

Merge test cases from several harness models into
a single harness model.

sldvmergeharness

Extract an atomic subsystem or atomic subchart
into a new model.

sldvextract

Simulate a model, executing the specified test cases
to record model coverage and outport values.

sldvruntest

Invoke the Code Generation Verification (CGV)
API, and execute the specified test cases on the
generated code for the model.

Note To execute a model in different modes
of execution, you use the CGV API to verify
the numerical equivalence of results. For more
information about the CGV API, see “Verifying
Numerical Equivalence with Code Generation
Verification”.

sldvruncgvtest

Functions for Component Verification

Component verification functions do not support the following Simulink
software features:

e Variable-step solvers for sldvruntest
e Component interfaces that contain:

Complex signals

Variable-size signals

= Array of buses

Multiword fixed-point data types

10-5

1 0 Verifying Model Components

10-6

Example: Verifying a Component for Code Generation

In this section...
“About the Example Model” on page 10-6

“Preparing the Component for Verification” on page 10-9
“Recording Coverage for the Component” on page 10-11

“Using Simulink® Design Verifier Software to Record Additional Coverage”
on page 10-12

“Combining the Harness Models” on page 10-13
“Executing the Component in Simulation Mode” on page 10-15

“Executing the Component in Software-in-the-Loop (SIL) Mode” on page
10-16

About the Example Model

This example uses the slvnvdemo_powerwindow model to show how to verify
a component in the context of the model that contains that component.

As you work through this example, you use the Simulink Design Verifier
component verification functions to create test cases and measure coverage
for a referenced model. In addition, you can execute the referenced model in
both simulation mode and Software-in-the-Loop (SIL) mode using the Code
Generation Verification (CGV) APL.

Note You must have the following product licenses to run this example:

e Stateflow
e Embedded Coder™

e Simulink Coder

The component that you verify is a Model block named control. This
component resides inside the power_window_control_system subsystem in the
top level of the slvnvdemo_powerwindow model.

Example: Verifying a Component for Code Generation

17] slvnvdemo_powerwindow, power_window_control_system E\@
File Edit View Simulation Format Tools Help
DSES iy P =0 |Nomal S BeeEs mEE®
Hreset
position —— 1)
obstacle position
(2 ¥———neutral endstop i
driver_neutral detect_obstacle_endstop
(3 r——mup
i neutral_up_down
drwer_u down P endstop slvnvdemo_powerwindow_controller |
driver_down mavellp 1)
rese obstacle maove_up
- validate_driver driver
maveDown |—mw({ 2
{5 ———m{neutral passenger move_down
passenger_neutral contral
up
passenger_up neutral_up_down
7 down
passenger_down
''''' . validate_passenger
Ready 100% oded3

The Model block references the slvnvdemo powerwindow controller model.

10-7

1 0 Verifying Model Components

10-8

pr

EJ shvnvdemo_powerwindow_controller E @

File Edit View Simulation Format Tools Help

L EEE&S iy » = 100 [Nomal

Simulink Verification and Validation
Power Window Controller

1 hrll:ndstup \I =
endstop mu'.erp
20 | 0bstacle R movellp
obstacle [@]
{2 %) P driver =
driver moveDown
' hf_aasseng&r Y. L be L maveDown
passenger
control
Copyright 1980-2010 The MathWorks, Inc.
Ready 1003 oded

The referenced model contains a Stateflow chart control, which implements
the logic for the power window controller.

Example: Verifying a Component for Code Generation

u Stateflow (chart) slvnvdemo_powerwindow_controller/control

File Edit View Simulation Debug

&

Tools Format Add Patterns Help k!

HE R &=>¢ BE »

[][e

U BRRMNO W

L

¥i|o’|@ @

E |2 |E |E

i

.
&
E

b

=k

driertistral
ey

maowELip =
e Do =

pEssengerCown
eFfry. masDown = 1
exit moveDown = O

[Endsang | amer(s k)] "‘\\\ R

passengerln
EnRry- moveLip = 1
R mowelip =0

driverDown
entry- moelown =1
exit movelown =

il

driverlp
e maelp

Xl moelp =0

[drhe !

v L

Create Transition

Preparing the Component for Verification

To verify the referenced model slvnvdemo_powerwindow_controller, create
a harness model that contains the input signals that simulate the controller
in the plant model:

1 Open the slvnvdemo_powerwindow demo model and the referenced model:

slvnvdemo_powerwindow;
slvnvdemo_powerwindow_controller;

2 Open the power_window_control_system subsystem in the demo model.

10-9

1 0 Verifying Model Components

Note The Model block named control in the power_window_control_system
subsystem references the component that you verify during this example,
slvnvdemo_powerwindow_controller.

3 Simulate the Model block that references the
slvnvdemo_powerwindow_controller model and log the input signals
to the Model block:

loggedSignalsPlant = ...
sldvlogsignals(...
‘slvnvdemo_powerwindow/power_window_control_system/control');

sldvlogsignals stores the logged signals in loggedSignalsPlant.
4 Generate a harness model with the logged signals:

harnessModelFilePath = ...
sldvmakeharness('slvnvdemo_powerwindow_controller',
loggedSignalsPlant);

sldvmakeharness creates and opens a harness model named
slvnvdemo_powerwindow_controller_harness. The Signal Builder block
contains one test case containing the logged signals.

Note For more information about harness models, see “Harness Model” on
page 13-13.

5 For use later in this example, save the name of the harness model:

[~,harnessModel] = fileparts(harnessModelFilePath);

6 Leave all windows open for the next part of this example.

Next, you will record coverage for the slvnvdemo_powerwindow controller
model.

10-10

Example: Verifying a Component for Code Generation

Recording Coverage for the Component

Model coverage is a measure of how thoroughly a test case tests a model, and
the percentage of pathways that a test case exercises. To record coverage for
the slvnvdemo_powerwindow_controller model:

1 Create a default options object, required by the sldvruntest function:

runOpts = sldvruntestopts;

2 Specify to simulate the model, and record coverage:

runOpts.coverageEnabled = true;

3 Simulate the referenced model and record coverage:

[~, covDataFromLoggedSignals] =
sldvruntest('slvnvdemo_powerwindow_controller',...
loggedSignalsPlant,runOpts);

4 Display the HTML coverage report:

cvhtml('Coverage with Test Cases', covDataFromLoggedSignals);

The slvnvdemo_powerwindow_controller model achieved:
® Decision coverage: 40%
¢ Condition coverage: 35%

e MCDC coverage: 10%

Note For more information about decision coverage, condition coverage,
and MCDC coverage, see “Types of Model Coverage”.

Because you did not achieve 100% coverage for the
slvnvdemo_powerwindow_controller model, next, you will analyze the
model to record additional coverage and create additional test cases.

10-11

1 0 Verifying Model Components

10-12

Using Simulink Design Verifier Software to Record
Additional Coverage

You can use the Simulink Design Verifier software to analyze the
slvnvdemo_powerwindow_controller model and collect coverage. You can
specify that the analysis ignore any previously satisfied objectives and record
additional coverage.

To record additional coverage for the model:

1 Save the coverage data that you recorded for the logged signals in a file:
cvsave('existingCovFromLoggedSignal',covDataFromLoggedSignals) ;
2 Create a default options object for the analysis:
opts = sldvoptions;

3 Specify that the analysis ignore objectives that you satisfied when you
logged the signals to the Model block:

opts.IgnoreCovSatisfied = 'on';

4 Specify the name of the file that contains the satisfied objectives data:

opts.CoverageDataFile = 'existingCovFromLoggedSignal.cvt';

5 Specify that the analysis not display unsatisfiable objectives in the
Simulink Diagnostics Viewer:

opts.DisplayUnsatisfiableObjectives = 'off';

For this example, the focus is on satisfying as many objectives as possible.

6 Specify that the analysis create long test cases that satisfy several
objectives:

opts.TestSuiteOptimization = 'LongTestcases';

Creating a smaller number of test cases each of which satisfies multiple
test objectives saves time when you execute the generated code in the next
section.

Example: Verifying a Component for Code Generation

7 Specify to create a harness model that references the component using a
Model block:

opts.saveHarnessModel = 'on';
opts.ModelReferenceHarness = 'on';

The harness model that you created from the logged signals in “Preparing
the Component for Verification” on page 10-9 uses a Model block that
references the slvnvdemo_powerwindow_controller model. The harness
model that the analysis creates must also use a Model block that references
slvnvdemo_powerwindow_controller. You can append the test case data
to the first harness model, creating a single test suite.

8 Analyze the model using the Simulink Design Verifier software:

[status, fileNames] = ...
sldvrun('slvnvdemo_powerwindow_controller',
opts, true);

The analysis creates and opens a harness model
slvnvdemo_powerwindow_controller_harness. The Signal Builder block
contains one long test case that satisfies 82 test objectives.

You can combine this test case with the test case that you created in
“Preparing the Component for Verification” on page 10-9, to record
additional coverage for the slvnvdemo_powerwindow_controller model.

9 Save the name of the new harness model and open it:

harne

Next, you will merge the two harness models to create a single test suite.
Combining the Harness Models
You created two harness models when you:

® Logged the signals to the control Model block that references the
slvnvdemo_powerwindow_controller model.

® Analyzed the slvnvdemo_powerwindow_controller model.

10-13

1 0 Verifying Model Components

If you combine the test cases in both harness models, you can record coverage
that gets you closer to achieving 100% coverage:

1 Merge the harness models by appending the most recent test cases to the
test cases for the logged signals:

sldvmergeharness(harnessModel, newHarnessModel);

The Signal Builder block in the

slvnvdemo_powerwindow_controller_harness model now contains
both test cases.

2 Log the signals to the harness model:

loggedSignalsMergedHarness = sldvlogsignals(harnessModel);

3 Use the combined test cases to record coverage for the
slvnvdemo_powerwindow_controller harness model. First, configure
the options object for sldvruntest:

runOpts = sldvruntestopts;
runOpts.coverageEnabled = true;

4 Simulate the model and record and display the coverage data:

[~, covDataFromMergedSignals] =
sldvruntest('slvnvdemo_powerwindow_controller',
loggedSignalsMergedHarness, runOpts);
cvhtml('Coverage with Merged Test Cases',
covDataFromMergedSignals);

The slvnvdemo_powerwindow_controller model now achieves:

® Decision coverage: 100%
® (Condition coverage: 80%

e MCDC coverage: 60%

10-14

Example: Verifying a Component for Code Generation

Executing the Component in Simulation Mode

To verify that the generated code for the model produces the same results
as simulating the model, use the Code Generation Verification (CGV) API
methods.

Note To execute a model in different modes of execution, you use the CGV
API to verify the numerical equivalence of results. For more information
about the CGV API, see “Verifying Numerical Equivalence with Code
Generation Verification”.

When you perform this procedure, the simulation compiles and executes the
model code using both test cases.

1 Create a default options object for sldvruncgvtest:

runcgvopts = sldvruntestopts('cgv');

2 Specify to execute the model in simulation mode:

runcgvopts.cgvConn = 'sim';

3 Execute the slvnv_powerwindow controller model using the two test
cases and the runcgvopts object:

cgvSim = sldvruncgvtest('slvnvdemo_powerwindow_controller',
loggedSignalsMergedHarness,
runcgvopts);

These steps save the results in the workspace variable cgvSim. Next, you will
execute the same model with the same test cases in Software-in-the-Loop

(SIL) mode and compare the results from both simulations.

For more information about Normal simulation mode, see “Executing the
Model”.

10-15

1 0 Verifying Model Components

Executing the Component in Software-in-the-Loop
(SIL) Mode

When you execute a model in Software-in-the-Loop (SIL) mode, the simulation
compiles and executes the generated code on your host computer.

In this section, you execute the slvnvdemo_powerwindow controller model
in SIL mode and compare the results to the previous section, when you
executed the model in simulation mode.

1 Specify to execute the model in SIL mode:
runcgvopts.cgvConn = 'sil';

2 Execute the slvnv_powerwindow_controller model using the two test
cases and the runcgvopts object:

cgvSil = sldvruncgvtest('slvnvdemo_powerwindow_controller',
loggedSignalsMergedHarness,
runcgvopts);

The workspace variable cgvSil contains the results of the SIL mode
execution.

3 Compare the results in cgvSil to the results in cgvSim, created from the
simulation mode execution. Use the cgv.CGV.compare method to compare
the results from the two simulations:

for i=1:length(loggedSignalsMergedHarness.TestCases)
simout = cgvSim.getOutputData(i);
silout = cgvSil.getOutputData(i);
[matchNames, ~, mismatchNames, ~] =
cgv.CGV.compare(simout, silout);
end

4 Display the results of the comparison in the MATLAB command window:

fprintf (['\nTest Case(%d):'...
'%sd Signals match, %d Signals mismatch\r'],...
i, length(matchNames), length(mismatchNames));

As expected, the results of the two simulations match.

10-16

Example: Verifying a Component for Code Generation

For more information about Software-in-the-Loop (SIL) simulations, see
“What are SIL and PIL Simulations?”

10-17

'IO Verifying Model Components

10-18

Considering Specified
Minimum and Maximum
Values for Inputs During
Analysis

® “Overview” on page 11-2

¢ “Example: Output Minimum and Maximum Values on Inport Blocks” on
page 11-4

¢ “sldvData Fields for Minimum and Maximum Input Values” on page 11-6

¢ “Example: Minimum and Maximum Values in Simulink.Signal Objects”
on page 11-8

¢ “Example: Minimum and Maximum Values on Stateflow Data Objects” on
page 11-10

¢ “Example: Minimum and Maximum Values in Subsystems” on page 11-13

e “Example: Minimum and Maximum Values in Global Data Storage” on
page 11-16

11 Considering Specified Minimum and Maximum Values for Inputs During Analysis

11-2

Overview

In this section...

“Simulink® Design Verifier Support for Specified Input Minimum and
Maximum Values” on page 11-2

“Limitations of Simulink® Design Verifier Support for Specified Minimum
and Maximum Values” on page 11-3

When creating a model, you can use specified minimum and maximum values
on input ports to mimic environmental constraints as part of your design. The
Simulink Design Verifier analysis can automatically consider these values

as constraints for:

® Design error detection
® Test case generation

¢ Property proving

Specifying minimum and maximum input values is similar to the way you use
the Test Condition block or the sldv.condition function to constrain signals
during test case generation or the Proof Assumption block or the sldv.assume
function to constrain signals during property proving. The Test Condition and
Proof Assumption blocks capture the analysis constraints. The Simulink
Design Verifier software can also consider the design constraints captured

in the Inport block minimum and maximum parameters as constraints for
analysis.

Note For more information about signal values, see “Working with Signals”
in the Simulink User’s Guide.

Simulink Design Verifier Support for Specified Input
Minimum and Maximum Values

By default, the Simulink Design Verifier software considers any minimum
and maximum input values specified for Inport blocks in your model. To
enable this capability:

Overview

1 In the model window, select Tools > Design Verifier > Options.

2 On the Design Verifier pane, select the Use specified input minimum
and maximum values parameter.

3 Once the analysis is complete, to view the design minimum and maximum
constraints for your model, click Generate detailed analysis reports.

The constraints are listed in the Analysis Information chapter of the
Simulink Design Verifier report.

Limitations of Simulink Design Verifier Support for
Specified Minimum and Maximum Values

Simulink Design Verifier support for specified minimum and maximum
values has the following limitations:

¢ The analysis considers specified minimum and maximum values on
root-level Inport blocks only. The analysis ignores any minimum and
maximum values specified on other Simulink blocks.

¢ The analysis does not consider specified minimum and maximum values
on bus objects. The analysis ignores any minimum and maximum values
specified on Simulink bus objects.

11-3

11 Considering Specified Minimum and Maximum Values for Inputs During Analysis

Example: Output Minimum and Maximum Values on
Inport Blocks

You can specify the output minimum and maximum values on Inport blocks
in the Block Parameter dialog box, on the Signal Attributes tab. Set the
following parameters:

¢ Minimum

* Maximum
The following example model restricts the signals from two Inport blocks:

e Inputl block: Minimum: 1, Maximum: 5

¢ Input2 block: Minimum: —1, Maximum: 1

s)

EJ ex_minmax_cn_inports E' @

File Edit Wiew Simulation Format Teools Help

O = S » = [0 |

1 %} P <=0
Inputi
1, 5] Compare
) To Zero - oR
R
: Gt
Logical
@ <=0 Operator
Input2
[1, 1] Compare
) To Zerod
Ready [100% FixedStepDiscrete

When you analyze this model using the Simulink Design Verifier software,
the analysis uses the minimum and maximum values as constraints. The
analysis produces the following results:

114

Example: Output Minimum and Maximum Values on Inport Blocks

¢ The output from Inputl is never less than 0, so the first input to the Logical
Operator block is never false. The objective that the first input to the
Logical Operator is false is therefore unsatisfiable.

® The Logical Operator block cannot achieve 100% MCDC coverage because
the condition where the first input is false never occurs.

The detailed analysis report indicates the values it used as constraints.
Constraints

Design Min Max Constraints

Name Design Min Max Constraint
[nput [1. 5]
[nput2 [-1. 1]

11-5

11 Considering Specified Minimum and Maximum Values for Inputs During Analysis

11-6

sldvData Fields for Minimum and Maximum Input Values

When you analyze a model, the Simulink Design Verifier software generates
a data file when it completes its analysis. The data file is a MAT-file that
contains an sldvData structure. The sldvData structure stores all the data
that the software gathers and produces during the analysis. You can use the
data file to customize your own analysis or to generate a custom report.
If your model contains specified minimum and maximum values on the input
ports, the sldvData structure contains information about those values. For
example, after analyzing the ex_minmax_on_inports model in “Example:
Output Minimum and Maximum Values on Inport Blocks” on page 11-4, the
data file contains the following values:
¢ For the Inputl block:
sldvData.Constraints.DesignMinMax (1) .value{1}.low

ans =

sldvData.Constraints.DesignMinMax (1) .value{1}.high

ans =

¢ For the Input2 block:

sldvData.Constraints.DesignMinMax(2).value{1}.low
ans =

-1
sldvData.Constraints.DesignMinMax(2).value{1}.high

ans =

sldvData Fields for Minimum and Maximum Input Values

11-7

11 Considering Specified Minimum and Maximum Values for Inputs During Analysis

11-8

Example: Minimum and Maximum Values in
Simulink.Signal Objects

Using the Model Explorer, in the model workspace, you can specify minimum
and maximum values on Simulink.Signal objects associated with input

signals.

The following example model uses the Simulink.Signal objects associated
with the input signals a and b to restrict the signal values:

¢ Signal a: Minimum: 1, Maximum: 5

¢ Signal b: Minimum: —1, Maximum: 1

e

EJ ex_minmax_cn_signals

O =:E&E

File Edit Wiew Simulation Format Tools

-

(= [](s)

Help
» = [

(1 r——w{==0

0. 0

OR

—»

Inputi_sig |

(2 =0

Input2_sig
0.

F100% FixedStepDiscrete

Cutl_sig

When you analyze this model, the results are the same as if you specified the
minimum and maximum values on the input ports.

Example: Minimum and Maximum Values in Simulink.Signal Obijects

Specifying Signal Ranges on Inport Blocks and Signals If you specify
ranges on the Inport blocks and on the signals, the analysis considers the
tightest range. For example, if you specify a range of 4..12 on an input port
and a range of 1..8 on the signal from the input port, the analysis considers
the range 4..8.

11-9

11 Considering Specified Minimum and Maximum Values for Inputs During Analysis

Example: Minimum and Maximum Values on Stateflow
Data Objects

11-10

Using the Model Explorer, you can specify ranges on data objects that are
directly connected to the root-level input ports for a Stateflow chart.

In the following example model, the Stateflow chart Chart has a data object
x whose range you specified as 0 < x < 10. In this chart, x must be greater
than 15 to trigger the transition from low to high.

EJ ex_minmax_on_sf_data
File Edit Wiew Simulation

Help

O EeEES

-

(=] O |w]

Format Tools

0. 0

Chart

F100%

FixedStepD

Example: Minimum and Maximum Values on Stateflow® Data Objects

.)

Stateflow (chart) ex_minmax_on_sf_data/Chart E @

File Edit View Simulation Debug Tools Format Add Patterns Help
FEHE ‘i e BE > v n | EHEEH| P

l xhasrange 0 =x =10

low

x=>15

h
—_

Ready

The value of x must fall between 0 and 10, so the transition condition [x >
15] is never true. The transition from low to high never occurs. Because
the high state is never entered, the transition condition [x < 15] is never
tested, and the transition from high to low never occurs; the chart is always
in the low state.

When you analyze this model, the following objectives are proven
unsatisfiable:

® The high state is never entered.

11-11

11 Considering Specified Minimum and Maximum Values for Inputs During Analysis

® The transition condition [x > 15] is always false, never true.

® The condition [Xx < 15] is never tested, so it is never true or false.

The analysis report indicates the values it used as constraints.
Constraints

Design Min Max Constraints

Name Design Min Max Constraint
X [0. 10]

11-12

Example: Minimum and Maximum Values in Subsystems

Example: Minimum and Maximum Values in Subsystems

The Simulink Design Verifier software considers specified input minimum
and maximum values as constraints only at the top level of a model. You can
specify minimum and maximum values on Input ports on subsystems, but
when you analyze the top-level model, the software ignores those values.

However, when you perform the subsystem analysis, the software considers
specified minimum and maximum values on the input ports of the subsystem.

For example, consider the following model, and its subsystem.

-

EJ ex_minmax_in_subsystem EI@
File Edit View Simulation Format Teols Help
O =z=:ES& 4 10.0 Mormal
(T —m 7|C | elzzin ssoutl—m 1)
Input3 - Dut2
m. Soturatien Subsystem
Ready 100%; FixedStepDiscrete

11-13

11 Considering Specified Minimum and Maximum Values for Inputs During Analysis

W ex_minmaz_in_subsystem/Subsystern E@

File Edit WView Simulation Format Tools Help

O = & 1 »

) < 1)

55in _ S50ut
[-10, 10] Saturation
: -15to 15
Fl100% FixedStepDiscrete

In Subsystem, the specified minimum and maximum values for input port
SSIn are —10 and 10, respectively. The lower and upper limits for the
Saturation block are —15 and 15, respectively.

If you right-click Subsystem in the top-level model and select Generate Tests
for Subsystem, the analysis considers the specified minimum and maximum
values as constraints on the SSIn port.

Constraints

Design Min Max Constraints

Name Design Min Max Constraint
S3In [-10, 10]

The analysis identifies two unsatisfiable objectives:

® input > lower limit F: The input is always greater than the lower limit on
the Saturation block (—15).

11-14

Example: Minimum and Maximum Values in Subsystems

® input >= upper limit T: The input is never greater than or equal to the
upper limit (15).

If you analyze the model that contains Subsystem, the analysis does not
consider the values specified on the input port SSIn in the subsystem. The
analysis considers only the root-level input ports at the respective level of
the hierarchy for analysis.

11-15

11 Considering Specified Minimum and Maximum Values for Inputs During Analysis

Example: Minimum and Maximum Values in Global Data

Storage

11-16

A data store is a repository to which you can write data and from which you
can read data, without having to connect an input or output signal directly to
the data store. You create a data store using a Data Store Memory block or
a Simulink.Signal object. You can specify minimum and maximum values
for any data store.

As described in “Extracting Subsystems for Analysis” on page 14-17, during
subsystem analysis, the Simulink Design Verifier software create a new input
port to mimic the execution context for a global data store. If the data store
has specified minimum and maximum values, those values are assigned as
minimum and maximum values on the new input port. The input minimum
and maximum values are used as subsystem-level analysis constraints.

In the following example model, the data store A has a minimum value of 0
and a maximum value of 10.

I o

EJ ex_minmax_data_stores E @

File Edit Wiew Sirmulation Format Tools Help

e ES » = [ic

Ot

Data Store
Memony

Subsystemn

F|100% FixedStepDiscrete

The atomic subsystem reads from the data store and checks to see if the input
1s less than 0. The Compare To Zero block outputs 1 if the input is less than 0,

Example: Minimum and Maximum Values in Global Data Storage

and outputs O if the output is greater than or equal to 0. The Test Objective
block checks to see if the output is ever 1.

P

EJ ex_minmax_data_stores/Subsystern E @

File Edit Wiew Simulation Format Tools Help

O =zEE T

{1}
A ———p =0 (0 —m 1)

Ot
Data Store
Read

Compare
To Zero

F|100% FixedStepDiscrete

If you right-click Subsystem in the top-level model and select Generate Tests
for Subsystem, the analysis considers the constraints for the data store A.

Constraints

Design Min Max Constraints

Name Design Min Max Constraint
A

A [0. 10]

The analysis does not satisfy the objective specified in the Test Objective

block. The input is always greater than or equal to 0, so the output from the
Compare To Zero block is always 0, never 1.

11-17

11 Considering Specified Minimum and Maximum Values for Inputs During Analysis

11-18

Proving Properties of a
Model

* “About Property Proving” on page 12-2
* “Workflow for Proving Model Properties” on page 12-4
® “Proving Properties in a Model” on page 12-5

e “Using a Verification Model to Prove System-Level Properties” on page
12-28

* “Proving Properties in a Subsystem” on page 12-32

® “Property-Proving Examples” on page 12-33

12 Proving Properties of a Model

12-2

About Property Proving

A property is a requirement that you model in Simulink, Stateflow, and using
MATLAB Function blocks. A property can be a simple requirement, such as a
signal in your model that must attain a particular value or range of values
during simulation.

A property can also be a requirement on the model that involves a number
of input and output signals modeled as a logical expression that needs to be
proved.

The Simulink Design Verifier software performs a formal analysis of your
model to prove or disprove the specified properties. After completing the
analysis, the software offers several ways for you to review the results:

e Highlighted on the model

® A harness model with test cases

e A detailed HTML report

Proof Blocks

The Simulink Design Verifier software provides two blocks so you can specify
property proofs in your Simulink models:

¢ Proof Objective — Define the values of a signal to prove

® Proof Assumption — Constrain the values of a signal during a proof

Note Blocks from the Model Verification library in the Simulink software
behave like Proof Objective blocks during Simulink Design Verifier proofs.
You can use Assertion blocks and other Model Verification blocks to specify
properties of your model. For more information about these blocks, see “Model
Verification” in the Simulink Reference.

About Property Proving

Proof Functions

The Simulink Design Verifier software provides two Stateflow and MATLAB
for code generation functions to specify property proving for a Simulink model
or Stateflow chart:

® sldv.prove — Specifies a proof objective

® sldv.assume — Specifies a proof assumption
These functions:
¢ Identify mathematical relationships for proving properties in a form that

can be more natural than using block parameters

® Support specifying multiple objectives, assumptions, or conditions without
complicating the model.

¢ Provide access to the power of MATLAB.

® Support separation of verification and model design.

For an example of how to use these proof functions, see the sldv.prove
reference page.

Note Simulink Design Verifier blocks and functions are saved with a model.
If you open the model on a MATLAB installation that does not have a
Simulink Design Verifier license, you can see the blocks and functions, but
they have no functionality.

12-3

12 Proving Properties of a Model

Workflow for Proving Model Properties

To prove properties of your design model, MathWorks recommends the
following workflow:

1 Determine the verification objectives for your design model, e.g., based on
your requirements specifications.

2 Instrument your design model to specify proof objectives and proof
assumptions.

¢ For simple properties, instrument your model with blocks or MATLAB
functions that specify the proof objectives.

¢ For system-level properties, construct a verification model that contains
a Model block that references the design model and define the properties
on the design model interface using the same inputs and outputs.

3 Define analysis constraints using the Proof Assumption block or
sldv.assume. These constraints apply to all enabled proof objectives.

Note The proof assumptions are applied to all enabled proof objectives.
Make sure that you do not specify any contradictory assumptions because
that might nullify the entire analysis.

4 Specify options that control how Simulink Design Verifier proves the
properties of your model.

5 Execute the Simulink Design Verifier analysis and review the results.

For an exercise that demonstrates this workflow, see “Proving Properties in a
Model” on page 12-5.

12-4

Proving Properties in a Model

Proving Properties in a Model

In this section...

“About This Example” on page 12-5

“Constructing the Example Model” on page 12-6

“Checking Compatibility of the Example Model” on page 12-7
“Instrumenting the Example Model” on page 12-9
“Configuring Property-Proving Options” on page 12-10
“Analyzing the Example Model” on page 12-11

“Reviewing the Analysis Results” on page 12-11
“Customizing the Example Proof” on page 12-21
“Reanalyzing the Example Model” on page 12-22

“Reviewing the Results of the Second Analysis” on page 12-23
“Analyzing Contradictory Models” on page 12-26

“Proving Properties in a Large Model” on page 12-27

About This Example

The following sections describe a Simulink model, for which you prove

a property that you specify using a Proof Objective block. This example
demonstrates the property-proving capabilities of the Simulink Design

Verifier software.

In this example, you perform the following tasks.

Task | Description See...

1 Construct the example “Constructing the Example Model” on
model. page 12-6

2 Ensure that your model “Checking Compatibility of the
is compatibility with the Example Model” on page 12-7
Simulink Design Verifier
software.

12-5

12 Proving Properties of a Model

Task | Description See...

3 Add a Proof Objective block | “Instrumenting the Example Model”
to your model to prepare for | on page 12-9
its proof.

4 Configure the Simulink “Configuring Property-Proving

Design Verifier software to | Options” on page 12-10
prove properties.

5 Prove a property of your “Analyzing the Example Model” on
model. page 12-11
6 Review the analysis results. | “Reviewing the Analysis Results” on
page 12-11
7 Add proof assumptions to “Customizing the Example Proof” on
specify analysis constraints. | page 12-21
8 Prove a property of the “Reanalyzing the Example Model” on
customized model and page 12-22

interpret the results.

Constructing the Example Model

Construct a Simulink model to use in this example:

1 Create an empty Simulink model.

2 Copy the following blocks into your empty model window:

¢ From the Sources library, an Inport block to initiate the input signal
whose value the Simulink Design Verifier software controls

¢ From the Logic and Bit Operations library, a Compare To Zero block to
provide simple logic

® From the Sinks library, an Outport block to receive the output signal

3 Connect these blocks such so your model appears similar to the following
model:

12-6

Proving Properties in a Model

=] ex_property_proving_example_b... E@
File Edit Wiew Simulation Format Teols

Help
O Ed& a

CO—w=0—»(

In1 Chut
Compare

To fero

F125% FixedStepl

4 In the model window, select Simulation > Configuration Parameters.

5 On the left side of the Configuration Parameters dialog box, in the Select
tree, click the Solver category. On the right side, under Solver options:

e Set the Type option to Fixed-step.

® Set the Solver option to Discrete (no continuous states).

The Simulink Design Verifier can analyze only models that use a fixed-step
solver.

6 Click OK to save your changes and close the Configuration Parameters
dialog box.

7 Save your model with the name ex_property proving example basic.

Checking Compatibility of the Example Model

Every time Simulink Design Verifier software analyzes a model, before the
analysis begins, the software performs a compatibility check. If your model
is not compatible, the software cannot analyze it.

12-7

12 Proving Properties of a Model

You can also make sure you model is compatible with the Simulink Design
Verifier software before you start the analysis:

1 Open the ex_property proving_example basic model.

2 In the model window, select Tools > Design Verifier > Check Model
Compatibility.

The Simulink Design Verifier software displays the log window, which
states whether or not your model is compatible.

The model you just created is compatible.

P =

ﬂ Simulink Design Verifier log: ex_property_proving_example_basic @

25-0ct-2010 14:22:43

Checking compatibility of model
'ex_property_proving_example_basic'

Compiling model... done

Checking compatibility... done
'ex_property_proving_example_basic' is compatible with Simulink
Design Verifier.

| Save Log || Close

What If a Model Is Partially Compatible?

If the compatibility check indicates that your model is partially compatible,
your model contains at least one object that the Simulink Design Verifier

12-8

Proving Properties in a Model

software does not support. You can analyze a partially compatible model, but,
by default, unsupported objects are stubbed out. The results of the analysis
may be incomplete. For detailed information about automatic stubbing, see
“Handling Incompatibilities with Automatic Stubbing” on page 2-10.

Instrumenting the Example Model

Prepare your example model so that you can prove its properties with the
Simulink Design Verifier software. Specifically, instrument the model by
adding and configuring a Proof Objective block:

1 In the MATLAB Command Window, enter sldvlib.
The Simulink Design Verifier library appears.
2 Open the Objectives and Constraints sublibrary.

3 Copy the Proof Objective block to your model and insert it between the
Compare To Zero and Outport blocks.

4 In your model, double-click the Proof Objective block.
The Proof Objective block parameters dialog box opens.
5 In the Values box, enter 1.

The Simulink Design Verifier software will attempt to prove that the
signal output by the Compare To Zero block always attains this value for
any signals that it receives.

6 Click OK to apply your changes and close the Proof Objective block
parameters dialog box.

12-9

12 Proving Properties of a Model

-

W ex_property_proving_sxample_basic EI@

File Edit Wiew Simulation Format Tools Help

O =& - »

O =0~

In1 Ot
Compare
To Zero

FixedStepDiscrete

F125%

7 Save your model and keep it open.

Configuring Property-Proving Options
Configure the Simulink Design Verifier software to prove properties of the
ex_property_proving_example_basic model that you instrumented:

1 Open the ex_property_proving _example basic model.

2 In your Simulink model window, select Tools > Design
Verifier > Options.

3 On the left side of the Configuration Parameters dialog box, in the Select
tree, select the Design Verifier category. Under Analysis options on the
right side, set the Mode parameter to Property proving.

4 Click OK to apply your changes and close the Configuration Parameters
dialog box.

12-10

Proving Properties in a Model

Note On the Property Proving pane, you can optionally specify values
for other parameters that control how the Simulink Design Verifier
software proves properties of your model. For more information, see
“Design Verifier Pane: Property Proving” on page 15-37.

5 Save the ex_property _proving example basic model.

Analyzing the Example Model

To analyze the ex_property _proving example basic model, in the model
window, select Tools > Design Verifier > Prove Properties. The Simulink
Design Verifier software begins a property-proving analysis.

During the analysis, the log window shows the progress of the analysis. It
displays information such as the number of objectives processed and which
objectives were satisfied or falsified.

To terminate the analysis at any time, in the log window, click Stop.

Reviewing the Analysis Results

When the analysis is complete, the log window displays the following options
for reviewing the results:

¢ Highlight the analysis results on the model

® Generate a detailed HTML analysis report

® (Create a harness model with test cases

® Simulate the test cases created by the model and produce a model coverage

report

You can also view the Simulink Design Verifier data file. For detailed
information about the data file, see “Simulink® Design Verifier Data Files”
on page 13-5.

The following sections describe how you can review the analysis results:

e “Reviewing the Results on the Model” on page 12-12

12-11

12 Proving Properties of a Model

® “Reviewing the Detailed Analysis Report” on page 12-14

e “Reviewing the Harness Model” on page 12-16

® “Simulation the Model with the Counterexample” on page 12-18

® “Reviewing Analysis Results in the Model Explorer” on page 12-20

Reviewing the Results on the Model
You can review the analysis results at a glance by viewing the blocks that are

highlighted in the model window. The highlighting can have three colors:
® Green — The analysis proved all the proof objectives valid.

¢ Red — The analysis disproved a proof objective and generated a
counterexample that falsified that objective.

® Orange — The analysis disproved a proof objective, but it could not
generate a counterexample or the proof objective remained undecided. This
result occurs due to:

= A proof objective on a signal whose value the software cannot control, for
example, a Constant block

A proof objective that depends on nonlinear computation
A proof objective that creates an arithmetic error, such as division by zero

Automatic stubbing being enabled, and the analysis encountering an
unsupported block whose operation it does not understand but that the
analysis requires to generate the counterexample

The analysis timing out

Limitations of the analysis engine
Highlight the analysis results on the example model:

1 In the log window for the ex_property _proving_example basic analysis,
click Highlight analysis results on model.

12-12

Proving Properties in a Model

.

W ex_property_proving_sxample_basic EI@
File Edit WYiew Sirmulation Format Tools Help
D EE& - »
1
<=0—
In1 Cut
Compare
To Zero
F125% T=0.00 FixedStepDiscrete

The Proof Objective block is highlighted in red, which indicates that a proof
objective was falsified with a counterexample.

The Simulink Design Verifier Results window appears. As you click objects
in the model, this window changes to display detailed analysis results for

that object.

P

':‘k Simulink Design Verifier Results
&=

Close results

Property proving completed normally
All 1 objectives falsified.

Results:

» iew detailed analysis report
* Create harness model

ST ﬂ

12-13

12 Proving Properties of a Model

Tip By default, the Simulink Design Verifier Results window is always
the top-most visible window. To allow the window to move behind other
window, click @ and clear Always on top.

2 Click the highlighted Proof Objective block.

The Simulink Design Verifier Results window indicates that the proof
objective that the output signal from the Compare to Zero was not 1 was
disproved with a counterexample.

Reviewing the Detailed Analysis Report
To create a detailed HTML analysis report:

1 In the Simulink Design Verifier log window, click Generate detailed
analysis report.

The HTML report opens in a browser window.

2 The report includes the following Table of Contents. Click a hyperlink to
navigate to particular section in the report.

Table of Contents

1. Summary
Analysis Information
FI

i
3. Proof Objectives Status
4. Properties

3 In the Table of Contents, click Summary.

12-14

Proving Properties in a Model

Chapter 1. Summary

Analysis Information

Madel: ex_praperty_proving_example
Mode: FropertyProving

Status: Completed normally

Analysis Time: Os

Objectives Status

Number of Objectives: 1
Objectives Falsified with Counterexamples: 1

The Summary provides an overview of the analysis results, and it indicates
that the Simulink Design Verifier software identified a counterexample
that falsifies an objective in your model.

4 Scroll back to the top of the browser window. In the Table of Contents,
click Proof Objectives Status.

Objectives Falsified with Counterexamples

#. [Type Model ltem Description Counterexample
Custom

1 Proof Froof Objective |Objective: 1 1
Ohbjective

The Objectives Falsified with Counterexamples table lists the proof
objectives that the Simulink Design Verifier software disproved using a
counterexample that it generated. You can locate the objective in your
model window by clicking Proof Objective; the software highlights the
corresponding Proof Objective block in your model window.

5 In the Objectives Falsified with Counterexamples table, under the
Counterexample column, click 1.

12-15

12 Proving Properties of a Model

Proof Objective

Summary

Model ltern: Proof Objective
Froperty: Objective: 1
Status: Falsified

Counter Example

Time|0
Step |1
Nl |1

This section displays information about proof objective 1 and provides
details about the counterexample that the Simulink Design Verifier
software generated to disprove that objective. In this counterexample, a
signal value of 99 falsifies the objective that you specified using the Proof
Objective block. That is, 99 is not less than or equal to 0, which causes the
Compare To Zero block to return 0 (false) instead of 1 (true).

Reviewing the Harness Model

Create a harness model with counterexamples that falsify the proof objectives
in your model:

1 In the Simulink Design Verifier log window, click Create harness model.

The software creates a harness model named
ex_property_proving_example_basic_harness.mdl.

12-16

Proving Properties in a Model

e

1] ex_property_proving_sxample_basic_harness

fo s

-

Dt
Test Unit {copied from ex_property_proving_sxample_basic)

Inputs

[
DOG

Text
Test Case Explanation

0435

Ready FixedStepDiscrete

File Edit View Simulation Format Tools Help
b =& -) » = [p200.. [Nomal
Sze-Typs
Counterexample 1
% it i out | ——(1)

The harness model contains the following items:

¢ Signal Builder block named Inputs — A group of signals that falsify
proof objectives.

® Subsystem block named Test Unit — A copy of your model.

¢ DocBlock named Test Case Explanation — A textual description of the
counterexamples that the analysis generates.

¢ A Size-Type block — A subsystem that transmits signals from the Inputs
block to the Test Unit block. This block ensures that the signals are the
appropriate size and data type for the Test Unit block.

2 Double-click the Inputs block.

12-17

12 Proving Properties of a Model

12-18

u Signal Builder (ex_property_proving_example_basic_harness/Inputs) EI@

File Edit Group Signal Axes Help u

FE| R o o |~ T 0EEREE o

fCDunterexample1 \'-.\

Hame: In1 iE T

Index: 1 - L - il

Click to select signal In1 (&1} [Y Min™

The input signal 1 causes the output of the Compare to Zero block to be 0.
This counterexample violates the proof objective that specifies that the
output of the Compare to Zero block be 1.

Simulation the Model with the Counterexample

Simulate the harness model to observe the counterexample that falsifies the
proof objective in your model:

1 In the ex_property_proving_example_basic model window, select

View > Library Browser

2 From the Sinks library, copy a Scope block into your harness model

window. The Scope block allows you to see the value of the signal output by
the Compare To Zero block in your model.

Proving Properties in a Model

3 In your harness model window, connect the output signal of the Test Unit

subsystem to the Scope block.

e

1] ex_property_proving_sxarmple_basic_harness

fo s

= 114>l—> 1

File Edit View Simulation Format Teools Help
D EE& - = » = [o200. [Nomal
Sze-Typs
Counterexample 1
ount

Inputs

[
DOG

Text

Test Case Explanation

Ready 0435

Test Unit {copied from ex_property_prowing_

FixedStepDiscrete

Dt
ample_basic)

]

Soope

4 In your harness model window, select Simulation > Start to begin the

simulation.

The Simulink software simulates the harness model.

5 In your harness model window, double-click the Scope block to open its

display window.

12-19

12 Proving Properties of a Model

12-20

B scope =
SEPLL AEREB BEE -

The Scope block displays the value of the signal output by the Compare To
Zero block in your model. In this example, the Compare To Zero block
returns O (false) throughout the simulation, which falsifies the proof
objective that the output of the Compare to Zero block be 1 (true). The
counterexample that the Signal Builder block supplies falsifies the proof
objective.

Reviewing Analysis Results in the Model Explorer

If you close the analysis results so you review any falsified objectives, you
may need to review the analysis results again. As long as your model remains
open, you can view the results of your most recent Simulink Design Verifier
analysis results in the Model Explorer. After you close your model, you can
no longer view any analysis results.

In the model window, select Tools > Design Verifier > Latest Results.
The Model Explorer opens, and the results of the latest Simulink Design
Verifier analysis appear in the right-hand pane.

Proving Properties in a Model

For any Simulink Design Verifier analysis, from the Model Explorer, you can
perform any of the following tasks.

Task For more information

Highlight the analysis results on the | “Highlighted Results on the Model”
model. on page 13-2

Generate a detailed analysis report. | “Simulink® Design Verifier Reports”

on page 13-25

Create the harness model, or if the | “Harness Model” on page 13-13
harness model already exists, open
it.

If no counterexamples were created
during the analysis, this option is
not available.

View the data file. “Simulink® Design Verifier Data
Files” on page 13-5

View the log file. “Simulink® Design Verifier Log
Files” on page 13-48

Customizing the Example Proof

Modify the simple Simulink model whose proof objective the Simulink Design
Verifier software disproved in the previous task. Specifically, customize the
proof by adding and configuring a Proof Assumption block:

1 In the MATLAB Command Window, type sldvlib.
The Simulink Design Verifier library opens.

2 Open the Objectives and Constraints sublibrary.

3 Copy the Proof Assumption block to your model.

4 In your model window, insert the Proof Assumption block between the
Inport and Compare To Zero blocks.

12-21

12 Proving Properties of a Model

5 In your model, double-click the Proof Assumption block to access its
attributes.

The Proof Assumption block parameter dialog box opens.

6 In the Values box, enter [-1, 0]. When proving properties of this
model, the Simulink Design Verifier software constrains the signal values
entering the Compare To Zero block to the specified range. If the input to
the Compare to Zero block is always within this range, the output of the
Compare to Zero block will always be 1.

7 Click Apply and then OK to apply your changes and close the Proof
Assumption block parameter dialog box.

B ex_property_proving_example_basic EI@

File Edit Wiew Sirmulation Format Tools Help

L EES = 2 »

-

<=0 —

In1 Out1
Compare
To Zero
Fl145% T=0.00 FixedStepDiscrete

8 Save the ex_property_proving example basic model and keep it open.
Reanalyzing the Example Model

Analyze the model that you modified to see how the Proof Assumption block
affects the property-proving analysis.

12-22

Proving Properties in a Model

In the ex_property proving _example basic model window, select
Tools > Design Verifier > Prove Properties.

When the analysis is complete, the log window displays the options. There is

no option to create a harness model, because the analysis satisfied all proof
objectives in your model, so there are no counterexamples.

Reviewing the Results of the Second Analysis
Review the results of the second analysis:
e “Reviewing the Results on the Model” on page 12-23

® “Reviewing the Analysis Report” on page 12-25

Reviewing the Results on the Model
Highlight the model to see the analysis results:

1 Click Highlight analysis results on model.

The Proof Objective is now highlighted in green.

12-23

12 Proving Properties of a Model

P =

W ex_property_proving_sxample_basic EI@
File Edit Wiew Sirmulation Format Tools Help
D EE& = 22 b
-1, 0]
> <o} —
In1 Out1
Compare
To Zero
F|148% T=0.00 FixedStepDiscrete

2 Click the Proof Objective block.

The Simulink Design Verifier Results window shows that the proof
objective that states that the signal be 1 is valid.

P

41 Simulink Design Verifier Results EI@
= ~ &2
Back to summary - Close results
ex_property_proving_example_basic/Proof Objective
Objective: 1 VALID

12-24

Proving Properties in a Model

Reviewing the Analysis Report
Review the analysis results in the detailed report:

1 Click Generate detailed analysis report.

2 In the Table of Contents, click Summary.

Chapter 1. Summary

Analysis Information

Muadel; ex_property_proving_example_basic
Mode: FropertyProving

Status: Completed normally

Analysis Time: Os

Objectives Status

Number of Objectives:
Chbjectives Proven Valid:

The Summary chapter indicates that the Simulink Design Verifier software
proved a proof objective in the model.

3 The Constraints section lists the analysis constraint you specified in the

Proof Assumption block.

Constraints

Analysis Constraints

Name

Analysis Constraint

Assumption

[-1.0]

12-25

12 Proving Properties of a Model

12-26

4 Scroll back to the top of the browser window. In the Table of Contents,
click Proof Objectives Status.

Objectives Proven Valid

Type Model ltem Description Counterexample
1 PI".:'Df. Froof Objective |Ohjective: 1 n'a
ohjective

The Objectives Proven Valid table lists the proof objectives that the
Simulink Design Verifier software proved to be valid.

5 Scroll down to view the Properties chapter or go to the top of the browser
window and in the Table of Contents, click Properties.

Proof Objective

Summary

Maodel ltem: Proof Ohjective
Property: Objective: 1
Status Proven valid

The Proof Objective summary indicates that the Simulink Design Verifier
software proved an objective that you specified in your model. The Proof
Assumption block restricts the domain of the input signals to the interval
[-1, 0]. Therefore, the software proves that this interval does not contain
values that are greater than zero, thereby satisfying the proof objective.

Analyzing Contradictory Models

If the analysis produces the error The model is contradictory in its
current configuration, the software detected a contradiction in your model
and it cannot analyze the model. You can have a contradiction if your model
has Proof Assumption blocks with incorrect parameters. For example, an

Proving Properties in a Model

assumption could states that a signal must be between 0 and 5 when the
signal is constant 10.

If the software detects a contradiction, all previous results are invalidated
and the software reports that all the properties are falsified.

Proving Properties in a Large Model

A successful proof of your model requires that the Simulink Design Verifier
software search through all reachable configurations of your model—even the
ones that are reached only after long time delays. The computation time and
memory required to search a model completely often make an exhaustive
proof impractical.

“Techniques for Proving Properties of Large Models” on page 14-27 gives

detailed information about strategies you can use to improve the performance
of a property-proving analysis of a large model.

12-27

12 Proving Properties of a Model

Using a Verification Model to Prove System-Level

Properties

12-28

In this section...

“When to Use a Verification Model for Property Proving” on page 12-28
“About this Example” on page 12-28

“Understanding the Verification Model” on page 12-29

“Proving the Properties of the Design Model” on page 12-29

“Fixing the Verification Model” on page 12-31

When to Use a Verification Model for Property
Proving

If your model has system-wide properties that affect the behavior of the
model, you might want to prove the properties without changing the design
model. To do this, you create a verification model that includes:

® Model block that references the design model

® One or more verification subsystems that define the properties and any
required constraints

About this Example

The design model sldvdemo_sbr_design models the logic for a seat belt
reminder light. If the ignition is turned on, the seat belts are unfastened, and
the car exceeds a certain speed, the seat belt reminder light turns on.

The sldvdemo_sbr_verification model is a verification model that defines
some constraints and verifies the properties in the sldvdemo_sbr_design
model. The Model block in the verification model references the design model,
so that the verification logic exists only in the verification model.

The sldvdemo_sbr_verification model contains a property that is falsified,
because a constraint is disabled. In the sldvdemo_sbl verification_fixed
model, the constraint is enabled and all the properties are proven valid.

Using a Verification Model to Prove System-Level Properties

Understanding the Verification Model

Take these steps to understand how the verification model works:

1 Open the verification model:

sldvdemo_sbr_verification

The Design Model block is a Model block that references
sldvdemo_sbr_design. The SBR Stateflow chart in the design model
assumes that the KEY input is initially O.

2 Open the Safety Properties subsystem that specifies the properties of the
design model that you want to prove.

This subsystem contains a MATLAB Function block called MATLAB
Property. The code in this block specifies the property that the seat belt
reminder should be on when the ignition is on, the seat belt is not fastened,
and the speed is less than 15:

3 Close the Safety Properties subsystem.
4 Open the Input Constraints subsystem.

This subsystem defines the following constraints:
® The key can have three positions: 0, 1, 2
¢ The speed is constrained to fall between 10 and 30.

® The key must start at 0 and can only change by one increment at a time.
For example, the key can change from 0 to 1 or 1 to 2, but not from 0 to
2. In this verification model, this constraint is not enabled.

5 Close the Input Constraints subsystem, but keep the
sldvdemo_sbr_verification model open.

Proving the Properties of the Design Model

Analyze the sldvdemo_sbr_verification model to prove the properties:

1 In the sldvdemo_sbr_verification model window, to start the analysis,
double-click the Run button to start the analysis.

12-29

12 Proving Properties of a Model

When the analysis completes, the Simulink Design Verifier log window
indicates that one objective was falsified.

2 To see which objective was falsified, click Highlight analysis results
on model.

The Safety Properties subsystem is highlighted in red.

3 Open the Safety Properties subsystem and click the MATLAB Property
block.

The Simulink Design Verifier Results window indicates that the statement

sldv.prove(implies(activeCond,SeatBeltIcon))

was false during at least one time step.

=
Back to summary - Close results
sidvdemo_sbr_verificationfSafety Properties/MATLAB Property
sldv. prove (implies(activeCond, SeatBeltlcon)) ERROR - View

counterexample

4 Click View counterexample to see the signal values that violated this
property.

The Signal Builder block opens with the counterexample. The KEY input
was initially 2, which is invalid.

To validate the property specified in the Safety Properties subsystem, you
have to ensure that the initial value of KEY is 0.

12-30

Using a Verification Model to Prove System-Level Properties

Fixing the Verification Model

The Input Constraints subsystem in the verification model contained three
constraints. The third constraint, which requires that the initial value of KEY
be 0, and that KEY can only change in increments of 1, is disabled.

{intB(0),int8(1),int8(2)}

| [Keyl]
fi([10 30], foedt(0,16,2))
| [Speed]
inta-1 11}
.1 [] []
| [Keyl . - a
z 1] 1]

To see how this property is validated when you enable the third constraint:

1 In the sldvdemo_sbr_verification model, click Open Fixed Model.
The sldvdemo_sbr_verification_fixed verification model opens.
2 Open the Input Constraints subsystem.

This third constraint is now enabled so that KEY has an initial value of
0 and changes in increments of 1.

3 Close the Input Constraints subsystem.

4 In the sldvdemo_sbr_verification_fixed model, to start the analysis,
double-click the Run block.

The analysis proves the validity of the property.

12-31

12 Proving Properties of a Model

Proving Properties in a Subsystem

If you have a large model, you can prove the properties of a subsystem in the
model and review the analyses in smaller, manageable reports. The workflow

for proving properties in a subsystem is:
1 Open the model that contains the subsystem.

2 Make the subsystem atomic.

3 Run the Simulink Design Verifier software using the Prove Properties of
Subsystem option.

4 Review the results.

The tutorial in “Analyzing a Subsystem” on page 1-30 explains how to
generate test cases for the Controller subsystem in the Cruise Control Test
Generation model. The steps for proving properties are similar to those
for generating test cases, except that you select the Prove Properties of
Subsystem option instead of the Generate Tests for Subsystem option.

12-32

Property-Proving Examples

Property-Proving Examples

The Simulink Design Verifier block library includes a sublibrary Example
Properties. The Example Properties sublibrary includes:

* “Basic Properties” on page 12-33 — Four examples that demonstrate how
to prove basic properties.

e “Temporal Properties” on page 12-36 — Four examples that demonstrate
how to define temporal properties on Boolean signals

The workflow for using these examples in your model is:

1 Copy these examples into your Verification Subsystem block.
2 Adapt them, if necessary, for the specific properties that you want to prove.

3 Run the Simulink Design Verifier analysis to prove that the assertions in
these examples never fail.

4 If the assertion fails, the software creates a counterexample that causes the
assertion to fail and then generates a harness model.

5 On the harness model, execute the counterexample to confirm that the
assertion fails with that counterexample.

Basic Properties
To view the Basic Properties examples:

1 Open the Simulink Design Verifier block library. Type:
sldvlib
2 Double-click the Example Properties sublibrary.
3 Double-click the Basic Properties block that contains the examples.

The sections that follow describe each example in the Block Properties
sublibrary in detail.

12-33

12 Proving Properties of a Model

Conditions that Trigger a Result

The Simulink Design Verifier Implies block allows you to test for conditions

that trigger a result. This example specifies that if condition A is true, result B
must always be true.

: A-

condition A===B » I:)
:
result Aszerticn

Implie=s

Implies operation describes conditions that should trigger a result.

Increasing or Decreasing Signals
The two examples in this section specify that a signal is either:

* Always increasing or staying constant

* Always decreasing or staying constant

1 . —F_@
oL 1

increasing

Assertion2

(5 —t—p - —hﬁ—h_@

i
dalayd gte1

deoressing Assertion3

Increasing and decreasing operations describe signals that
should increase or decrease.

12-34

Property-Proving Examples

Exclusivity Operation

This example describes four conditions that should not be true at the same
time.

N

ched

Assertiond

Exclusivity operation describes conditions that should
never be true at same time.

Conditions with One True Element
This example specifies that only one of the four input signals can be true.

Mutual exclusivity cperation describes conditions that should
have exactly one true element.

12-35

12 Proving Properties of a Model

12-36

Temporal Properties
To view the Temporal Properties examples:

1 Open the Simulink Design Verifier block library. Type:
sldvlib
2 Double-click the Temporal Properties sublibrary.
3 Double-click the Temporal Properties block that contains the examples.

The sections that follow describe each example in the Temporal Properties
sublibrary in detail.

Synchronizing the Output with the Input
When the input In1 equals ACTIVE, the input In2 is set to INACTIVE after
five time steps.

Whenewer In1 becomes ACTIVE, then In2 shall become INACTIVE after a delay of & steps.

Ty -
’-D

-4 . _ J____L_
In1 J—> ot R e I
ACTIVE

C >

In2 J_>
INACTIVE

A ==>0l—on

Making a Signal Inactive After a Delay

In this example, after five consecutive time steps where the SENSOR_HIGH
input is true, the CMD signal becomes true. CMD is true as long as SENSOR_HIGH
is true, unless the block is reset by the MANUAL_RESET signal.

Property-Proving Examples

After Sensor is detected at HIGH for 5 consecutive steps, Cmd becomes and stays true for
the remaining duration of the Sensor value HIGH unless manual reset is detected.

© oot

SENSOR_HIGH Ot N

@ .'_:____I_L - true
*E

MAMUAL_RESET

7

CMD

Extending a True Signal

In this example, after the input becomes true, the output becomes true for the
number of time steps specified in the Detector block, in this case, 5. The input
remains true for 5 time steps as well.

Whenewer In becomes true, it shall stay true for the following 5§ steps as well.

I

(5 L R |_D“‘|_"A

In A==>B

—b

trse

Testing the Input Against a Specified Threshold
When the input In3 equals ON and the input In4 is less than the constant
THRESHOLD, In3 is set to OFF within five time steps.

12-37

12 Proving Properties of a Model

Whenewer In3 is ON and Ind is less that THRESHOLD, then In3 shall become OFF within § steps.

-

Ind4
] —
THRESHOLD | ™ anp - I ot
LML -
oM — _n— — ot L
—— s 1

D e [r
In3 _|—>

OFF

12-38

Reviewing the Results

e “Highlighted Results on the Model” on page 13-2

® “Simulink® Design Verifier Data Files” on page 13-5

¢ “Harness Model” on page 13-13

¢ “SystemTest TEST-Files” on page 13-22

* “Simulink® Design Verifier Reports” on page 13-25

® “Simulink® Design Verifier Log Files” on page 13-48

e “Reviewing Analysis Results in the Model Explorer” on page 13-49

1 3 Reviewing the Results

Highlighted

13-2

Results on the Model

In this section...

“When to Highlight Results on the Model” on page 13-2
“Enabling Highlighted Results on a Model” on page 13-2
“Simulink Design Verifier Results Window” on page 13-3
“Green Highlighting on Model” on page 13-3

“Red Highlighting on Model” on page 13-3

“Orange Highlighting on Model” on page 13-3

When to Highlight Results on the Model

When you analyze a model using the Simulink Design Verifier software, you
have the option to highlight the analyzed model objects in one of three colors:
* Green

* Red

® Orange

Model highlighting allows you to review the analysis results at a glance by
view the objects that are highlighted in the model window.

Enabling Highlighted Results on a Model

When you run a design error detection analysis, highlighting results on the
model is always enabled.

When you run a test-case generation or property-proving analysis, to enable
the highlighting, do one of the following:

¢ Before the analysis, in the Configuration Parameters dialog box, Design
Verifier > Results pane, select the Display the results of the analysis
on the model parameter.

e After the analysis, in the Simulink Design Verifier log window, select
Highlight analysis results on model.

Highlighted Results on the Model

Simulink Design Verifier Results Window

When a model is highlighted, you can click an object for which the analysis
recorded results. When you click the object, the Simulink Design Verifier
Results window displays the detailed analysis results for that object.

Green Highlighting on Model

Objects that are highlighted in green have the following meaning for each

type of analysis.

Analysis mode

Green highlighting means...

Design error

The analysis did not find any overflow or

detection division-by-zero errors.
Test-case The analysis found test cases that satisfy the test
generation objectives.

Property proving

The analysis proved all the proof objectives valid.

Red Highlighting on Model
Objects that are highlighted in red have the following meaning, depending

on the analysis type.

Analysis mode

Red highlighting means...

Design error

The analysis found at least one test case that causes

detection overflow or division-by-zero errors.
Test-case The analysis could not satisfy certain test objectives.
generation

Property proving

The analysis disproved a proof objective and generated
a counterexample that falsified that objective.

Orange Highlighting on Model

Objects that are highlighted in orange have the following meaning, depending

on the analysis type.

13-3

1 3 Reviewing the Results

Analysis mode

Orange highlighting means...

Design error
detection

For at least one objective, the analysis could
not determine if there were any overflow or
division-by-zero errors. This situation can occur
when:

® The analysis times out.

¢ The software cannot determine if an error
would occur due to automatic stubbing errors or
limitations of the analysis engine.

Test-case
generation

The analysis satisfied a test objective, but could not
create a test case. This situation can occur when:
® A test objective depends on nonlinear computation.

® A test objective creates an arithmetic error, for
example, division by zero.

® The analysis times out.

¢ The software cannot determine if a test objective
1s satisfiable due to automatic stubbing errors or
limitations of the analysis engine.

Property proving

The analysis disproved a proof objective, but could
not generate a counterexample, or the proof was
undecided. This situation can occur when:

® A proof objective exists on a signal whose value the

software cannot control, for example, a Constant
block.

® A proof objective depends on nonlinear computation.

® A proof objective creates an arithmetic error, for
example, division by zero.

® The analysis times out.

® The software cannot determine if a proof objective
can be validated due to automatic stubbing errors
or limitations of the analysis engine.

13-4

Simulink® Design Verifier™ Data Files

Simulink Design Verifier Data Files

In this section...

“About Simulink® Design Verifier Data Files” on page 13-5
“Overview of the sldvData Structure” on page 13-5
“Model Information Fields in sldvData” on page 13-6

“Simulating Models with Simulink® Design Verifier Data Files” on page
13-11

About Simulink Design Verifier Data Files

When you enable the Save test data to file parameter (see “Design Verifier
Pane: Results” on page 15-43), the Simulink Design Verifier software
generates a data file when it completes its analysis. The data file is a MAT-file
that contains a structure named sldvData. This structure stores all the data
the software gathers and produces during the analysis. Although the software
displays the same data graphically in the harness model and report, you can
use the data file to conduct your own analysis or to generate a custom report.

By default, the Save test data to file parameter is enabled.

Overview of the sldvData Structure

When the Simulink Design Verifier software completes its analysis, it
produces a MAT-file that contains a structure named sldvData. To explore
the contents of the sldvData structure:

1 Generate test cases for the sldvdemo_flipflop model (see “Analyzing a
Model” on page 1-7).

2 To load the data file, at the MATLAB prompt, enter the following command:

load('sldv_output\sldvdemo_flipflop\sldvdemo_flipflop_sldvdata.mat')

The MATLAB software loads the sldvData structure into its workspace.
This structure contains the Simulink Design Verifier analysis results of the
sldvdemo_flipflop model.

13-5

1 3 Reviewing the Results

3 Enter sldvData at the MATLAB command line to display the field names

that constitute the structure:

sldvData =

ModelInformation:
AnalysisInformation:
ModelObjects:
Constraints:
Objectives:
TestCases:

Version:

[1x1 struct]
[1x1 struct]
[1x2 struct]
[1

[1x12 struct]
[1x4 struct]
'2.0'

Model Information Fields in sldvData
The following sections describe the fields in the sldvData structure:

* “Modellnformation Field” on page 13-6

® “AnalysisInformation Field” on page 13-7

® “ModelObjects Field” on page 13-8

® “Constraints Field” on page 13-8
® “Objectives Field” on page 13-9

e “TestCases Field / CounterExamples Field” on page 13-9

® “Version Field” on page 13-11

Modelinformation Field

In the sldvData structure, the ModelInformation field contains information
about the model you analyzed. The following table describes each subfield of
the ModelInformation field.

Subfield Name Description

Name String that specifies the model name.
Version String that specifies the model number.
Author String that specifies the user name.

13-6

Simulink® Design Verifier™ Data Files

Subfield Name

Description

TimeStamp String that specifies the last date and time the model
was updated.

SubsystemPath String that represents the full path name of the
subsystem (if any) that was analyzed.

ExtractedModel String that represents the name of the model extracted
(if any) to analyze the subsystem (if any) specified in
SubsystemPath.

ReplacementModel | String that specifies the name of the model (if any)

that contains the block replacements.

Analysisinformation Field

In the sldvData structure, the AnalysisInformation field lists settings of
particular analysis options and related information. The following table
describes each subfield of the AnalysisInformation field.

Subfield Name

Description

Status String that specifies the completion status of the
Simulink Design Verifier analysis.

AnalysisTime Double that specifies the length of the analysis in
seconds

Options Deep copy of the Simulink Design Verifier options
object used during the analysis.

InputPortInfo Cell array of structures that specifies information
about each Inport block in the top-level system.

OutputPortInfo Cell array of structures that specifies information
about each Outport block in the top-level system.

SampleTimes For internal use only.

Parameters For internal use only.

AbstractedBlocks | For internal use only.

13-7

1 3 Reviewing the Results

13-8

Subfield Name Description

Approximations A structure that describes the approximations
performed during the analysis. For more information
about approximations, see “Approximations” on page
2-18.

ReplacementInfo | For internal use only.

ModelObjects Field

In the sldvData structure, the ModelObjects field lists the model items and
their associated objectives. The following table describes each subfield of the
ModelObjects field.

Subfield Name | Description

descr String that specifies the full path to a model object,
including objects in a Stateflow chart.

typeDesc String that specifies the block type of the model object.

slPath String that specifies the full path to a Simulink model
object.

sfObjType String that specifies the type of a Stateflow object,
e.g., S for state and T for transition.

sTObjNum Integer that represents the unique identifier of a
Stateflow object.

sid For internal use only.

designSid For internal use only.

replacementSid For internal use only.

objectives Vector of integers that represents the indices of

objectives associated with a model object.

Constraints Field

In the sldvData structure, the Constraints field lists information about
specified minimum and maximum values (if any) on input ports in your
model. The following table describes the subfield of the Constraints field.

Simulink® Design Verifier™ Data Files

Subfield Name

Description

DesignMinMax

Cell array of structures that include
the name and minimum and
maximum values for each input port
for which values are specified.

Objectives Field

In the sldvData structure, the Objectives field lists information about
each objective, such as its type, status, and description. The following table
describes each subfield of the Objectives field.

Subfield Name

Description

type String that specifies the type of an objective.

status String that specifies the status of an objective.

descr String that specifies the description of an objective.

label String that specifies the label of an objective.

outcomeValue Integer that specifies an objective’s outcome.

coveragePointIdx | Integer that represents the index of a coverage point
with which an objective is associated.

linkInfo For internal use only.

range For internal use only.

modelObjectIdx Integer that represents the index of a model object
with which an objective is associated.

testCaseldx Integer that represents the index of a test case or

counterexample that addresses an objective.

TestCases Field / CounterExamples Field
In the sldvData structure, this field can have two names, depending on the

type of check:

13-9

1 3 Reviewing the Results

e If you set the Mode parameter to Design error detection, the
CounterExamples field lists information about each test cases that results
in an integer-overflow or division-by-zero error.

e If you set the Mode parameter to Test generation, the TestCases field
lists information about each test case, such as its signal values and the
test objectives it achieves.

e Ifyou set the Mode parameter to Property proving, the CounterExamples
field lists information about each counterexample and the proof objective it
falsifies.

The following table describes each subfield of the TestCases /
CounterExamples field.

Subfield Name | Description

timeValues Vector that specifies the time values associated with
signals in a test case or counterexample.

dataValues Cell array that specifies the data values associated
with signals in a test case or counterexample.

paramValues Structure that specifies the parameter values
associated with a test case or counterexample. Its
fields include:

name — String that specifies the name of a parameter.

value — Number that specifies the value of a
parameter.

noEffect — Logical value that specifies whether a
parameter’s value affects an objective.

stepValues Vector that specifies the number of time steps that
comprise signals in a test case or counterexample.

13-10

Simulink® Design Verifier™ Data Files

Subfield Name Description

objectives Structure that specifies objectives that a test case or a
counterexample addresses. Its fields include:

objectiveldx — Integer that represents the
index of an objective that a test case achieves or a
counterexample falsifies.

atTime — Time value at which either a test case
achieves an objective or a counterexample falsifies an
objective.

atStep — Time step at which either a test case
achieves an objective or a counterexample falsifies an
objective.

dataNoEffect Cell array of logical vectors that specifies whether a
signal’s data values affect an objective. The vector
uses 1 to indicate that a signal’s data value does not
affect an objective; otherwise, it uses 0.

expectedOutput Cell array of vectors that specifies the output values
that result from simulating the model using the

test case signals. Each cell represents the output
values associated with a different Outport block in
the top-level system. This subfield is populated if you
select Include expected output values.

Version Field

In the sldvData structure, the Version field is a string that specifies the
version of the Simulink Design Verifier software that analyzed the model.

Simulating Models with Simulink Design Verifier
Data Files

The sldvruntest function simulates a model using test cases or
counterexamples that reside in a Simulink Design Verifier data file. For
example, suppose the following command specifies the location of the data
file that the Simulink Design Verifier software produced after analyzing the
sldvdemo_flipflop model (see “Analyzing a Model” on page 1-7):

13-11

1 3 Reviewing the Results

sldvDataFile = 'sldv_output\sldvdemo_flipflop\sldvdemo_flipflop_sldvdata.mat'

Use the sldvruntest function to simulate the sldvdemo flipflop model
using test case 2 in the data file:

output = sldvruntest('sldvdemo_flipflop', sldvDataFile, 2)

For more information, see the sldvruntest reference page.

13-12

Harness Model

Harness Model

In this section...
“About the Harness Model” on page 13-13

“Creating a Harness Model” on page 13-13
“Anatomy of a Harness Model” on page 13-14
“Configuration of the Harness Model” on page 13-19

“Simulating the Harness Model” on page 13-20

About the Harness Model

During or after a Simulink Design Verifier analysis, you can create a harness
model.

The contents of the harness depends on the value of the Mode parameter on
the Configuration Parameters dialog box Design Verifier pane:

® Design error detection — The harness model contains test cases that
result in integer-overflow or division-by-zero errors.

e Test generation — The harness model contains test cases that achieve
test objectives.

® Property proving — The harness model contains counterexamples that
falsify proof objectives.

By default, the Save test harness as model parameter is disabled.

Note The Simulink Design Verifier software can generate a harness model
only when the top level of the system you are analyzing contains an Inport
block.

Creating a Harness Model
To create a harness model before or after the analysis, do one of the following:

13-13

1 3 Reviewing the Results

13-14

® Before the analysis, in the Configuration Parameters dialog box,

Design

Verifier > Results pane, select the Save test harness as model

parameter.

e After the analysis, in the Simulink Design Verifier log window, select

Create harness model.

Anatomy of a Harness Model

The Simulink Design Verifier software produces a harness model that looks

like this:
§_| sldvdemo_cruise_control_harness EI@
File Edit View Simulation Fermat Tools Help
O =EEE » 0.069... |Nomal - &
Size-Type
enable enablz
Test Case &
braks brake throt » @
==t ==t throt
L | |
nc nc
target
[= [+ -] target
speed speed
Inputs Test Unit {copied from sldvdemo_cruise_control)
[
DoC
Text
Test Case Explanation
Ready 100% FixedStepDiscrete

The harness model contains the following items:

¢ Inputs — This Signal Builder block contains signals that comprise the

test cases or counterexamples that the Simulink Design Verifier

software

generated. The Signal Builder block contains signals only for input signals
that are used in the model. If an input signal has no effect on the output of

the model, that signal is not included in the Signal Builder block

Harness Model

Double-click the Inputs block to open the Signal Builder dialog box and
view its signals.

The following Signal Builder block shows the signals for Test Case 8 after
analyzing the sldvdemo_cruise_control model with the default options.

Each signal group represents a unique test case or counterexample. In the
Signal Builder dialog box, select a tab to view the signals associated with a
particular test case or counterexample.

13-15

1 3 Reviewing the Results

u Signal Builder (sldvdeme_cruise_control_harness/Inputs) *

File Edit

Group

BH| fRE oo |- E B8

Signal

Axes Help

I

CRFSRIE T -

(=)o =

.|

{Test Case 3 ‘{ Test Case 4 ‘{ Test Case & ‘{ Test Case 6 ‘{ Test Case 7){ Test Case 8 \{Test Case 9 \ E][E

Click to select signal

2 I R e e e bR
enable il il 3
1 T T hi
9 1 1 1 1 |
brake
0]
1 I ' ' I I I i
_______________ et O U S——
set i : : : i
e SRS R RS i 1
Y : : : 1 ;
1 - ! ;
0.5
0
101 : ; :
50 : : :
U —---------""""-" I I : I : :
0 0.01 0.02
LLeft.Po {shown)
brake {shown)
Hame: enable T T zet {shown)
= inc {shown)
Index: 1 hd Y dec {shown)
: speed {shown) -

| enable (#1) [%Min ¥YMax]

13-16

If you select the LongTestcases option of the Test suite optimization
parameter, the analysis creates fewer, longer test cases. For example, if
you select the LongTestcases option for the sldvdemo_cruise_control
model, the analysis produces one long test cases instead of nine shorter
test cases. The following Signal Builder dialog box shows the signals for

one of those two test cases.

Harness Model

Signal Builder (sldvdermao_cruise_contrel_harness/Inputs) EI@

File Edit Group Signal Axes Help &

BH| BRI FREE » 0= | E
{ Test Case 1

Y & & & & & & & & & - & & & - & - A & &
1“ - - - T - - - - - - - - - - -
'

0.5-e&nable___________

=

=

‘Mr-"--rpF---rfr-a--
H - ek -

=

=
(=L QL R S T L
I L

F=md == = —d ==

—h
=]
==

I

de-L

Nr-1--rf~-1--rm-1--

=

=]
=]
=T
(8]

brake {shown)
Hame: enable T- T- set {shown)
inc {shown)
Index: 1 - ¥ i dec {shown)
speed {shown) -

Click to select signal enable (#1) [YMin ¥Max]

Note For more information about the Signal Builder dialog box, see
“Working with Signal Groups” in Simulink User’s Guide.

13-17

1 3 Reviewing the Results

13-18

¢ Size-Type — This Subsystem block transmits signals from the Inputs

block to the Test Unit block. It ensures that the signals are of the
appropriate size and data type, which the Test Unit block expects.

Test Unit — This Subsystem block contains a copy of the original model
that the Simulink Design Verifier software analyzed.

If you select the Reference input model in generated harness on the
Design Verifier > Results pane, the Test Unit is a Model block that
references the model you are analyzing, not a subsystem.

Test Case Explanation — This DocBlock block documents the test cases
or counterexamples that the Simulink Design Verifier software generates.
Double-click the Test Case Explanation block to view a description of each
test case or counterexample. The block lists either the test objectives that
each test case achieves (as in the next graphic) or the proof objectives that
each counterexample falsifies.

Harness Model

7 Editor - Chlsers\slemaire\AppData\Local\Tempidocblock-345... EI@
File Edit Text Go Tools Debug Desktop Window Help ¥ |2 X

NEEERR9C|(S|(Menn[B] ~0

BB -0 |+ | +[11 [x|«F|@
1 |Te.5t Case 1 (8 Cbjectives) T
2 Parameter values:
3 =
4 1. Controller/Switchl - logical trigger input t=
5 2. Controller/Logical Operatorl - Logic: input
& 3. Controller/Logical Operator2 - Logic: input
7 4. Controller/Logical Operator?2 - Logic: MCDC e
g 5. Controller/Logical Operator - Logic: inmput p
9 6. Controller/Logical Operator - Logic: input p
10 7. Controller/Logical Operator - Logic: MCDC ex
11 8. Controller/PI Controller - enable logical va
12
13 Test Case 2 (3 Cbhbjectives)
14 Parameter values:
15
16 1. Controller/Logical Operatorl - Logic: input
17 2. Controller/Logical Operator - Logic: input p -
If = i = b
plain text file Ln 1 Col 1 OVR

Configuration of the Harness Model

After the Simulink Design Verifier software generates the harness model,
it has the following settings:

¢ The harness model start time is always 0. If the original model uses a
nonzero start time, the software ignores this and always uses 0 for the
simulation start time for test cases and counterexamples.

¢ The harness model stop time always equals the stop time of the longest test
case in the Signal Builder dialog box.

¢ By default, the software enables coverage reporting for harness models that
contain test cases. Although it enables coverage reporting with particular

13-19

1 3 Reviewing the Results

13-20

options selected, you can customize the settings to meet your needs. For
more information, see “Customizing the Requirements Report” in the
Simulink Verification and Validation User’s Guide.

Simulating the Harness Model

The harness model enables you to simulate a copy of your original model
using the test cases or counterexamples that the Simulink Design Verifier
software generates. Using the harness model, you can simulate:

® A counterexample

® A single test case, for which the Simulink Verification and Validation
software collects and displays model coverage information

e All test cases, for which the Simulink Verification and Validation software
collects and displays cumulative model coverage information

To simulate a single test case or counterexample:
1 In the harness model, double-click the Inputs block.
The Signal Builder dialog box appears.

2 In the Signal Builder dialog box, select the tab associated with a particular
test case or counterexample.

The Signal Builder dialog displays the signals that comprise the selected
test case or counterexample.

3 In the Signal Builder dialog box, click the Start simulation button ﬂ

The Simulink software simulates the harness model using the signals
associated with the selected test case or counterexample. When simulating
a test case, the Simulink Verification and Validation software collects
model coverage information and displays a coverage report.

To simulate all test cases and measure their combined model coverage:

1 In the harness model, double-click the Inputs block.

The Signal Builder dialog box appears.

Harness Model

all
2 In the Signal Builder dialog box, click the Run all button >

The Simulink software simulates the harness model using all test cases,
while the Simulink Verification and Validation software collects model
coverage information and displays a coverage report.

When you click Run all, the software simulates all the test cases using
the stop time for the harness model. The stop time equals the stop time
for the longest test case, so you may accumulate additional coverage when
you simulate the shorter test cases.

If the Test Unit in the harness model is a subsystem, the values of the
Simulink simulation optimization parameters on the Configuration
Parameters dialog box may impact your coverage results.

Note The simulation optimization parameters are on the following
Configuration Parameters dialog box panes:

e Optimization pane

¢ Optimization > Signals and Parameters pane

¢ Optimization > Stateflow pane

See “Simulating with Signal Groups” in Simulink User’s Guide for more
information about simulating models containing Signal Builder blocks.

13-21

1 3 Reviewing the Results

SystemTest TEST-Files

If you have installed the SystemTest™ software with your MATLAB
application, you can specify that the Simulink Design Verifier software create
a SystemTest TEST-file when it analyzes a model. Creating a TEST-file
allows you to configure and collect model coverage results and run the test
cases from inside the SystemTest environment.

Note The option to create a SystemTest TEST-file is only available
in test-generation mode; you cannot create this file when running a
property-proving analysis.

In addition, if you have a model with a large number of inputs, this feature
eliminates the overhead of creating the harness model. However, you can
create both a harness model and a TEST-file in the same analysis.

To create a TEST-file for the sldvdemo_cruise_control model, perform
these steps:

1 Type sldvdemo_cruise_control at the MATLAB command prompt to
open the Cruise Control Test Generation model.

2 Select Tools > Design Verifier > Options to open the Configuration
Parameters dialog box.

3 In the Select pane, under Design Verifier, select Results.

4 On the Results pane, under SystemTest options, select Save test
harness as SystemTest TEST-file (will reference saved data file).

SystemTest options
/| Save test harness as SystemTest TEST-file (will reference saved data file)

SystemTest file name: £ModelMames_harness

13-22

SystemTest™ TEST-Files

5 If you prefer a file name other than the default, specify the SystemTest
file name.

6 Under Data File options, verify that Save test data to file is selected.
You must select this option to generate a TEST-file.

Data file options
J| Save test data to file
Data file name: $ModelMName$_sldvdata
7 If you do not need the Simulink Design Verifier harness model in addition

to the TEST-file, under Harness model options, clear Save text
harness as model.

Harness model options

Save test harness as model

8 Click Apply and OK to save the changes and exit the Configuration
Parameters dialog box.

9 Double-click the Run block in the sldvdemo_cruise_control model to
start the analysis.

When the analysis completes, the SystemTest desktop opens the TEST-file,
which, for this example, is saved as

matlabroot\sldvdemo_output\sldv_cruise_control\sldvdemo_cruise_control_harness.test

13-23

1 3 Reviewing the Results

A SystemTest - C:AUsers\slemaire\sldv_output\sldvdemo_cruise_control\sldvdemo_cruise_control_harness.test EI@
File Edit Inset Run Tools Desktop Window Help

DB.|"°|E|RUH.StDp|@.

Test Browser ? x| Properties 2% | Test Vectors [Test Variables ' L) Desktop Help ["Run Status |
| New ~ | + 3§ | x | _ — Bl Getting Started with SystemTest
General | Output Files | Distributed

E|D sldvdemo_cruise_control_harne
' ’ Pre Test
E}Main Test (9 Iterations))
Model Under Test @ Alllimit check elements in an iteration pass

Thizs Test Passes If In order to build and run tests, there are certain

steps you nesdto dointhe SystemTest™ software.
“ou can do these steps inany order before running
your test. The following sections outline the
necessary steps to build and run a test.

2 Any limit check element in an iteration passes

AND *You can switch between the Getting Started page
= : : and the Desktop Help by clicking the appropriate
@ Alliterations pass tab. If this page is closed, you can view it again by
= : - selecting Help > SystemTest Getting Started.
() Any iteration passes R d

m

-@

: P Desktop Help
target

Description } Create or Open a Test

P Add Test Elements
P Create Test Vectors

P Create Test Variables

L[| P SaveResutts
} Run the Test

P Analyze Results with the Test Results Vigwer

4 m (3 4 m

In the Test Browser pane, the 9 iterations under Main Test correspond
to the 9 test cases the Simulink Design Verifier software generates and
describes in the Test Case Explanation block of the harness model.

For information about running the test cases using the SystemTest software,
see “Creating a Simulink Design Verifier Data File Test Vector” in the
SystemTest User’s Guide.

13-24

Simulink® Design Verifier™ Reports

Simulink Design Verifier Reports

In this section...

“About Simulink® Design Verifier Reports” on page 13-25
“Creating Analysis Reports” on page 13-25

“Front Matter” on page 13-26

“Summary Chapter” on page 13-26

“Analysis Information Chapter” on page 13-26

“Signal Bounds Chapter” on page 13-32

“Objectives Status Chapters” on page 13-33

“Model Items Chapter” on page 13-39

“Design Errors Chapter” on page 13-40

“Test Cases Chapter” on page 13-41

“Properties Chapter” on page 13-46

About Simulink Design Verifier Reports

After an analysis, the Simulink Design Verifier software can generate an
HTML report that contains detailed information about the analysis results.

In addition, the analysis report contains hyperlinks that allow you to:

e Navigate to a specific part of the report

e Navigate to the object in your Simulink model for which the analysis
recorded results

Creating Analysis Reports

To create a detailed analysis report before or after the analysis, do one of
the following:

¢ Before the analysis, in the Configuration Parameters dialog box, Design

Verifier > Report pane, select the Generate report of the results
parameter.

13-25

1 3 Reviewing the Results

13-26

e After the analysis, in the Simulink Design Verifier log window, select
Generate detailed analysis results.

Front Matter

The report begins with two sections:

e “Title” on page 13-26
® “Table of Contents” on page 13-26

Title

The title section lists the following information:

® Model or subsystem name the Simulink Design Verifier software analyzed
¢ User name associated with the current MATLAB session

® Date and time that the Simulink Design Verifier software generated the
report

Table of Contents

The table of contents follows the title section. Clicking items in the table of
contents allows you to navigate quickly to particular chapters in the report.

Summary Chapter
The Summary chapter of the HTML report lists the following information:

® Name of the model
® Analysis mode
® Analysis status

® Status of objectives analyzed

Analysis Information Chapter

The Analysis Information chapter of the HTML report includes the following
sections:

Simulink® Design Verifier™ Reports

® “Model Information” on page 13-27

® “Analysis Options” on page 13-27

e “Unsupported Blocks” on page 13-28

® “Constraints” on page 13-29

e “Block Replacements Summary” on page 13-29

® “Approximations” on page 13-31

Model Information

The Model Information section provides the following information about the
current version of the model:

¢ Path and file name of the model that the Simulink Design Verifier software
analyzed

® Model version

® Date and time that the model was last saved

e Name of the person who last saved the model

Analysis Options
The Analysis Options section provides information about the Simulink Design
Verifier analysis settings.

The Analysis Options section lists the parameters that affected the Simulink
Design Verifier analysis.

13-27

1 3 Reviewing the Results

13-28

Analysis Options

Mode

Test Suite Optimization
Maximum Testcase Steps
Test Conditions

Test Objectives

Model Coverage Objectives
Maximum Processing Time
Block Replacement

Block Replacement Rules
FParameters Analysis
FParameters Configuration File
Save Data

Save Hamess

Save Report

TestGeneration
CombinedObjectives
500 time steps
UselLocalSettings
UselocalSettings
MCDC

G0s

on
=FactoryDefaultRules=
on
sldv_params_template.m
on

on

an

Note For more information about these parameters, see Chapter 15,
“Simulink® Design Verifier Configuration Parameters”.

Unsupported Blocks

If your model includes unsupported blocks, by default, automatic stubbing is
enabled to allow the analysis to proceed. With automatic stubbing enabled,
the software considers only the interface of the unsupported blocks, not
their actual behavior. This technique allows the software to complete the
analysis. However, the analysis may achieve only partial results if any of the
unsupported model blocks affect the simulation outcome.

The Unsupported Blocks section appears only if the analysis stubbed any
unsupported blocks; it lists the unsupported block in a table, with a hyperlink

to the block in the model.

Simulink® Design Verifier™ Reports

Unsupported Blocks

The following blocks are not supported by Simulink Design Verifier.
They were abstracted during the analvsis. This can lead Simulink
Design Verifier to produce onlv partial results for parts of the model
that depends on the output values of these blocks.

Block Type
Trigonometric Function Trigonometry

For more information about automatic stubbing, see “Handling
Incompatibilities with Automatic Stubbing” on page 2-10.

Constraints

The Constraints section provides information about any test conditions that
the Simulink Design Verifier software applied when it analyzed a model.

Constraints

Mame Constraint
caonstraint |[0, 100]

You can navigate to the constraint in your model by clicking the hyperlink
in the Constraints table. The software highlights the corresponding Test
Condition block in your model window and opens a new window showing
the block in detail.

Block Replacements Summary

The Block Replacements Summary provides an overview of the block
replacements that the Simulink Design Verifier software executed. It appears
only if the Simulink Design Verifier software replaced any blocks in a model.

13-29

1 3 Reviewing the Results

13-30

Each row of the table corresponds to a particular block replacement rule that
the Simulink Design Verifier software applied to the model. The table lists
the following:

e Name of the file that contains the block replacement rule and the value of
the BlockType parameter the rule specifies

® Description of the rule that the MaskDescription parameter of the
replacement block specifies

e Names of any blocks that the Simulink Design Verifier software replaced
in the model

To locate a particular block replacement in your model, click on the name for
that replacement in the Replaced Blocks column of the table; the software
highlights the affected block in your model window and opens a new window
that displays the block in detail.

Simulink® Design Verifier™ Reports

Block Replacements Summary

Table 2.1. Block Replacements

Replaced

#: [Replacement Rule / Block Type Rule Description Blocks

Inserts test
ohjectives for each
1 |blkrep_rule_lookup _normal.m /Lookup |interval of 1-D Lookup Table
lookup table
blocks.

Inserts test
ohjectives for
switch blocks that
require each

2 |blkrep_rule_switch_normal.m /Switch |switch position be | Switch
demonstrated
when the values of
input ports 1 and 3
differ.

Approximates the
mathematical
function sqrt using
lookup table. The | Math Function
input range is
constrained to [0
10000].

sldvdemo_custom_blkrep_rule_sqgrt.m
/Math

See Chapter 4, “Working with Block Replacements” for more information.

Approximations

Each row of the Approximations table describes a specific type of
approximation that the Simulink Design Verifier software used during its
analysis of the model.

13-31

1 3 Reviewing the Results

13-32

Approximations

Simulink Design Verifier performed the following approximations during analysis.
These can impact the precision of the results generated by Simulink Design
Verifier. Please see the product documentation for further details.

Type Description

The model includes floating-point arithmetic.
1 |Rational approximation [Simulink Design Verfier approximates floating-point
arithmetic with rational number arithmetic.

Note Review the analysis results carefully when the software uses
approximations. In rare cases, an approximation may result in test cases that
fail to achieve test objectives or counterexamples that fail to falsify proof
objectives. For example, a floating-point-roundoff error might prevent a signal
from exceeding a designated threshold value.

Signal Bounds Chapter

In a design error detection analysis, the analysis calculates the bounds of the
signal values for the Outports for each block in the model. This information
can help you identify the source of data overflow or division-by-zero errors.

The table in the Signal Bounds chapter of the analysis report lists these
bounds.

Simulink® Design Verifier™ Reports

Chapter 3. Sighal Bounds

Signal Bounds
Controller/Constant1- outport 1 [-Inf, Inf]
Controller/Unit Delay- outport 1 [-Inf, Inf]
Controller/Constant3- outport 1 [-Inf, Inf]
Controller/Switchl- outport 1 [-Inf, Inf]
Controllen’Sum1- cutpaort 1 [-Inf, Inf]
Controller/Logical Operator]- outport 1 [F,T]
Controller/Unit Delay1- outport 1 [F,T]
Controller/Logical Cperator?- outport 1 [F.T]
Controller/Logical Operator- outport 1 [F.T]

throt- outport 1 [-Inf, Inf]

target- cutport 1 [-Inf, Inf]
Controllen’Pl Controller/Discrete-Time Integrator- outport 1 [-5, 5]
ContrallerPl ContrallerKp- autpart 1 [-3.6954e+305, Inf]
ControllenPl Controller/Kpl- outport 1 [-0.05, 0.05]
Controllen’Pl Controller/Sum- outport 1 [-3.5954e+306, Inf]
Controller/Switch2- outport 1 [-Inf, Inf]
Controller/Sum- outpart 1 [-Inf, Inf]
Controller’Switch3- outport 1 [-Inf, Inf]
Controller’Sum2- outpaort 1 [-Inf, Inf]

Obijectives Status Chapters

This section of the report provides information about all objectives in a model,
including an objective’s type, the model item to which it corresponds, and its

description.

® “Design Error Detection Objectives Status” on page 13-34

® “Test Objectives Status” on page 13-34

¢ “Proof Objectives Status” on page 13-37

® “Objectives Undecided” on page 13-38

® “Objectives Producing Errors” on page 13-39

13-33

1 3 Reviewing the Results

Design Error Detection Obijectives Status
If you run a design error detection analysis, the Design Error Detection

Objectives Status section can include the following tables:

® “Objectives Proven Valid” on page 13-34

® “Objectives Falsified with Test Cases” on page 13-34

Objectives Proven Valid. The Objectives Proven Valid section lists the
design error detection objectives that the analysis proved valid; no design
errors can occur for these objectives.

Objectives Proven Valid

. Test
[Type Model ltem Description Case
200 [Overflow debounce Civerflow nfa

Objectives Falsified with Test Cases. The Objectives Falsified with Test
Cases section lists the objectives for which the analysis found test cases that
demonstrate design errors.

Objectives Falsified with Test Cases

Type

Model ltem

Description

Test
Case

12

Cwerflow

erify True Cutput/Sum

Cwverflow

Test Objectives Status

If run a test-case generation analysis, the Test Objectives Status section can
include the following tables:

® “Objectives Satisfied” on page 13-35

13-34

Simulink® Design Verifier™ Reports

® “Objectives Satisfied - No Test Case” on page 13-35
® “Objectives Proven Unsatisfiable” on page 13-36

Objectives Satisfied. — The Objectives Satisfied section lists test objectives
that the analysis satisfied.

Objectives Satisfied

Simulink Design Verifier found test cases that exercise these test objectives.

L Test
#: |(Type Model Item Description Case
1 |Decision |Pl Controller enable logical value F |2
2 |Decision |Pl Controller enable logical value T 1
3 |Decision |P Controller enable logical value F |1
4 |Decision |P Controller enable logical value T |2
integer input value = 1
5 |Decision |mp switch (output is from input port|1
2)
integer input value = 2
6 |Decision |mp switch (output is from input port |2
3)

Objectives Satisfied - No Test Case. — The Objectives Satisfied - No
Test Case section lists test objectives that the analysis satisfied without
generating test cases.

Situations when the software might satisfy an objective but not create a test
case are:

¢ Test objectives that depend on nonlinear computation

¢ [f the test objective creates an arithmetic error, such as division by zero

¢ [f you enable automatic stubbing, and the analysis encounters an
unsupported block whose operation it does not understand

® A test case exists that depends on the behavior of a stubbed block

In the following example, nonlinear computation causes the signal to the
control input of the Saturation block to be out of range:

13-35

1 3 Reviewing the Results

13-36

Objectives Satisfied - No Test Case

#: |Type Model ltem Description Eg‘;te
2 |Decision |Saturation input = lower limit T n/a
3 |Decision [Saturation input == upper limit F n/a
4 |Decision |Saturation input == upper limit T n/a

Objectives Proven Unsatisfiable. — The Objectives Proven Unsatisfiable

section lists the test objectives that the analysis determined could not be
satisfied.

In the following example, the software found that there are no test cases

that achieve these objectives because the inputs to the Logical Operator are
never false.

Objectives Proven Unsatisfiable

Simulink Design Verifier proved that there does not exist any test case exercising
these test objectives. This often indicates the presence of dead-code in the model
Other possible reasons can be inactive blocks in the model due to parameter
configuration or test constraints such as given using Test Condition blocks. In rare
cases, the approximations performed by Simulink Design Verifier can make
objectives impossible to achieve

- Test
|Type lModel Item Description Case
2 |Condition |Legical Operataor Logic: input port 1 F nfa
: Condition |Logical Operator Laogic: input port 2 F nfa

In the following example, the Stateflow chart ShiftLogic updates at every time
step, so the implicit event tick is never false. The analysis cannot satisfy
condition or MCDC coverage for the temporal event after (TWAIT, tick).

Simulink® Design Verifier™ Reports

Objectives Proven Unsatisfiable

Simulink Design Verifier proved that there does not exist any test case exercising
these test objectives. This often indicates the presence of dead-code in the model
Other possible reasons can be inactive blocks in the model due to parameter
configuration or test constraints such as given using Test Condition blocks. In rare
cases, the approximations performed by Simulink Design Verifier can make objectives
impossible to achieve

- Test
|Type Model ltem Description Case
5 |condition ShiftLogic selection state "afterTWAIT tick) Er;l:;ilttiloos'h nfa
[speed <=... ‘tick” F
Transition
MCDC
15 [Mede ShiftLogic selection _state "after(TVWAIT tick) Hg;g?mn n/a
[speed <= expression with
Condition 1
“tick" F

Proof Objectives Status

If you run a property-proving analysis, the Proof Objectives Status section
can include:

® “Objectives Proven Valid” on page 13-37
® “Objectives Falsified with Counterexamples” on page 13-38
® “Objectives Falsified - No Counterexample” on page 13-38

Objectives Proven Valid. The Objectives Proven Valid section lists the
proof objectives that the analysis proved valid.

Objectives Proven Valid

|Type lModel Item Description Counterexample
Custom

1 |Proof Proof Objective Ohjective: 1 nia
Ohjective

13-37

1 3 Reviewing the Results

13-38

Objectives Falsified with Counterexamples. The Objectives
Falsified with Counterexamples section lists the proof objectives that the
analysis disproved. In this example, the software generated at least one
counterexample that falsifies the specified objectives.

Objectives Falsified with Counterexamples

[Type Model ltem Description Counterexample

Werify True
1 |Assert Output/Assertion

assert 1

Obijectives Falsified - No Counterexample. The Objectives Falsified

- No Counterexample section lists the proof objectives that the analysis
disproved without generating counterexamples. This occurs if, for example,
you specified a proof objective on a signal whose value the software cannot
control, or the software encountered a divide-by-zero error when instantiating
a counterexample.

Objectives Falsified - No Counterexample

#: |Type Model Item Description Counterexample
Custom
1 |Proof Proof Objective Objective: F n/a
Objective
Custam
2 |Proof Proof Objective1 Objective: T n'a
Objective

Objectives Undecided

For all types of objectives, the Objectives Undecided section lists the objectives
for which the analysis was unable to determine an outcome in the allotted
time.

In the following property-proving example, either the software exceeded its
analysis time limit (which the Maximum analysis time parameter specifies),
or you aborted the analysis before it completed processing these objectives.

Simulink® Design Verifier™ Reports

Objectives Undecided

Simulink Design Werifier was not able to process these objectives with the current
options.

|Type Model Item Description Counterexample
Custom
1 |Proof Werify Output/FoutCorrect|Objective: T nfa
Ohjective
Custom

2 |Proof Werify OutputToutCorrect |Objective: T nfa
Ohjective

Objectives Producing Errors

For all types of objectives, the Objectives Producing Errors table lists the
objectives for which the analysis encountered errors during its analysis.

In the following example, analyzing these objectives involves nonlinear
arithmetic, which the software does not support.

Objectives Producing Errors

e Test

#: |Type Model ltem Description Case
logical trigger input true

4 |Decision [Mode switch (output is from 1st input |n/a
port)

8 |Decision |Basic Roll Mode/integrator |ntegra_t|u:|_n result <= n/a
lower limit T

10 |Decision |Basic Roll Mode/Integratar |ntegra?|n!'1 result >= n/a
upper limit T

Model Iltems Chapter

The Model Items chapter of the HTML report includes a table for each object
in the model that defines coverage objectives. The table for a particular object
lists all of the associated objectives, the objective types, objective descriptions,
and the status of each objective at the end of the analysis.

13-39

1 3 Reviewing the Results

The table for an individual object in the model will look similar to this one
for the TK switch in the Roll Reference subsystem.

To highlight a given object in your model, click View at the upper-left corner of
the table; the software opens a new window that displays the object in detail.
To view the details of the test case that was applied to a specific objective,
click the test case number in the last column of the table.

Roll Reference/TK switch

View

Test

#: Type Description Status Case

logical trigger input
27 Decision false {output is from Produced n/a

3rd input port) ermar
logical trigger input
28 Decision true (output is from 1st|Satisfied
input port)

|—

Design Errors Chapter
If you run a design error detection analysis, the report includes a Design

Errors chapter. This chapter includes sections that summarize the design
errors the analysis validated or falsified:

® “Table of Contents” on page 13-40

* “Summary” on page 13-40

® “Test Case” on page 13-41

Table of Contents
Each Design Errors chapter contains a table of contents. Each item in the
table of contents is a hyperlink to results about a specific design error.

Summary
The Summary section lists:

® The model item

13-40

Simulink® Design Verifier™ Reports

® The type of design error that was detected (overflow or division by zero)

® The status of the analysis (Falsified or Proven Valid)

In the following example, the software analyzed the

sldvdemo_debounce falseprop model to detect design errors. The analysis
detected an overflow error in the Sum block in the Verification Subsystem
named Verify True Output.

Summary
Maodel lterm: Verify True Output/Sum
Type: Cwverflow
Status: Falsified
Test Case

The Test Case section lists the time step and corresponding time at which the
test case falsified the design error objective. The Inport block raw had a value
of 255, which caused the overflow error.

Test Case

Time00.01
Step |12
raw 255

Test Cases Chapter

If you run a test-case generation analysis, the report includes a Test Cases
chapter. This chapter includes sections that summarize the test cases the
analysis generated:

® “Table of Contents” on page 13-42

® “Summary” on page 13-42

® “Objectives” on page 13-42

® “Generated Input Data” on page 13-43

13-41

1 3 Reviewing the Results

e “Expected Output” on page 13-44
* “Combined Objectives” on page 13-44
® “Long Test Cases” on page 13-45

Table of Contents

Each Test Cases chapter contains a table of contents. Each item in the table
of contents is a hyperlink to information about a specific test case.

Summary
The Summary section lists:

® Length of the signals that comprise the test case

e Total number of test objectives that the test case achieves

Summary

Length: 0.06 Seconds (7 sample penods)
Obiective Count: 1

Objectives
The Objectives section lists:

® The time step at which the test case achieves that objective.
® The time at which the test case achieves that objective.

¢ A link to the model item associated with that objective. Clicking the link
highlights the model item in the Model Editor.

® The objective that was achieved.

13-42

Simulink® Design Verifier™ Reports

Ohjectives

Step Time | Model Item {Jbjectives

4 0.06 ControllenFT ntegration result ==
' ControllerDiscrete-Time Integrator | upper imit T

Generated Input Data

For each input signal associated with the model item, the Generated Input
Data section lists the time step and corresponding time at which the test case
achieves particular test objectives. If the signal value does not change over
those time steps, the table lists the time step and time as ranges.

Generated Input Data

Time 0 0.01-0.02/0.03 0.04-0.05/0.06
Step 1 2-3 4 3-6 7
enable 1 1 1 1 1
brake 0 0 0 0 0
set 1] 0 0 1

nc 1 1 1 1 -
dec 0] 1 0 -
speed o7] 0 0]

13-43

13 Reviewing the Results

13-44

Note The Generated Input Data table displays a dash (-) instead of a
number as a signal value when the value of the signal at that time step does
not affect the test objective. In the harness model, the Inputs block represents
these values with zeros unless you enable the Randomize data that does
not affect outcome parameter (see “Randomize data that does not affect
outcome” on page 15-49).

Expected Output

If you select the Include expected output values on the Design
Verifier > Results pane of the Configuration Parameters dialog box, the
report includes the Expected Output section for each test case. For each
output signal associated with the model item, this table lists the expected
output value at each time step.

Expected Output These cutput values are expected assuming
that imnputs that do not affect the test objectives (- in the table
above) are given a default value - 0 for numenc types, and
default walue for enumerated types.

Time 0 001 002 0.03 0.04 005 0.06
Step |1 2 3 4 5) 7
throt |0 196 |1.985982.01%7|12.04572.075350.05
target |97 98 45 100 101 102 |0

Combined Obijectives

If you set the Test suite optimization option to CombinedObjectives (the
default), the Test Cases chapter may include individual information about
many test cases.

Simulink® Design Verifier™ Reports

Chapter 3. Test Cases

Tahble of Contents

Test Caze 1
Test Caze 2
Test Case 3
Test Caze 4
Test Case 5
Test Caze &
Test Case 7
Test Cazse B
Test Case 9
Test Cage 10

Thiz section contatns detaled information about each generated
test case.

Test Case 1

Summary

Length: 0 Seconds {1 sample penods)
Objectrve Count: 3

Long Test Cases

If you set the Test suite optimization option to LongTestcases, the Test
Cases chapter in the report includes fewer sections about longer test cases.

13-45

13 Reviewing the Results

Chapter 5. Test Cases

Tahble of Contents

Test Casze 1

Thiz section contains detaled mformation about each
generated test case.

Test Case 1

Summary

Length: 0.23 Zeconds (24 sample penods)
Chjective Count: 24

Properties Chapter

If you run a property-proving analysis, the report includes a Properties
chapter. This chapter includes sections that summarize the proof objectives
and any counterexamples the software generated:

® “Table of Contents” on page 13-46

¢ “Summary” on page 13-47

¢ “Counterexample” on page 13-47

Table of Contents

Each Properties chapter contains a table of contents. Each item in the table
of contents 1s a hyperlink to information about a specific property that was
falsified.

13-46

Simulink® Design Verifier™ Reports

Summary
The Summary section lists:

¢ The model item that the software analyzed

¢ The type of property that was falsified

¢ The status of the analysis: Falsified

In the following example, the software analyzed the
sldvdemo_cruise_control verification model for property proving. The

analysis proved that the input to the Assertion block named BrakeAssertion
was nonzero.

Summary

Madel ltem: Yerify True Output/Sum

Type: Overflow

Status: Falsified
Counterexample

The Counterexample section lists the time step and corresponding time at
which the counterexample falsified the property. This section also lists the
values of the signals at that time step.

Counterexample

Time .010.02.0.04
Step
InputData. Actual_speed

0
1
0
InputData. Switches.enahle 1
0
1
1
0

InputData. Switches.brake
InputData. Switches. set

InputData. Switches. setincDec.inc
InputData. Switches. setincDec. dec

Ol = OOl =3Ok =
[] s] R []]

13-47

1 3 Reviewing the Results

Simulink Design Verifier Log Files

Every time you analyze a model, the Simulink Design Verifier software
creates a log file. To view the log file, click View Log in the Simulink Design
Verifier log window.

The log file contains a list of the analysis results for each object in the model.
The content of the log file corresponds to the analysis results displayed in
the log window during the analysis.

T
15-Cct-2010 10:01:11

Starting test generation for model 'sldvdemo cruise control'
Compiling model... done

Tran=slating model... done

'sldvdemo cruise control' is compatible with Simulink Design Verifier.
Generating test=s...

SATISFIED
Controller/Switchl
logical trigger input true (output is from lst input port)

SATISFIED
Controller/Logical Operatorl
Logic: input port 1 T

SATISFIED

Controller/Logical Operator?
Logic: input port 1 T

13-48

Reviewing Analysis Results in the Model Explorer

Reviewing Analysis Results in the Model Explorer

If you close the analysis results so you can fix the cause of any analysis errors
in your model, you may need to review the analysis results again. As long

as your model remains open, you can view the results of your most recent
Simulink Design Verifier analysis results in the Model Explorer. After you
close your model, you can no longer view any analysis results.

In the model window, select Tools > Design Verifier > Latest Results.
The Model Explorer opens, and the results of the latest Simulink Design
Verifier analysis appear in the right-hand pane.

For any Simulink Design Verifier analysis, from the Model Explorer, you can

perform any of the following tasks.

Task For more information
Highlight the analysis results on the | “Highlighted Results on the Model”
model. on page 13-2

Generate a detailed analysis report.

“Simulink® Design Verifier Reports”
on page 13-25

Create the harness model, or if the
harness model already exists, open
it.

You will not be able to create the

harness model if:

® No design error objectives were
falsified

® No test cases were generated

® No counterexamples were created

“Harness Model” on page 13-13

View the data file.

“Simulink® Design Verifier Data
Files” on page 13-5

View the log file.

“Simulink® Design Verifier Log
Files” on page 13-48

13-49

13 Reviewing the Results

13-50

Analyzing Large Models
and Improving Performance

® “Sources of Model Complexity” on page 14-2

® “Analyzing a Large Model” on page 14-3

® “Generating Reports for Large Models” on page 14-9

e “Managing Model Data to Simplify the Analysis” on page 14-10

e “Partitioning Model Inputs and Generating Tests Incrementally” on page
14-14

® “Analyzing the Model Using a Bottom-Up Approach” on page 14-16
e “Extracting Subsystems for Analysis” on page 14-17

® “Analyzing Logical Operations” on page 14-23

e “Handling Models with Large State Spaces” on page 14-24

¢ “Handling Problems with Counters and Timers” on page 14-25

® “Techniques for Proving Properties of Large Models” on page 14-27

14 Analyzing Large Models and Improving Performance

14-2

Sources of Model Complexity

Some characteristics of Simulink models can cause problems with a Simulink
Design Verifier analysis in the following ways:
e Complexity of model inputs due to:

= Large number of inputs (The number of inputs can vary, depending
on the individual model.)

= Types of inputs (floating-point values, for example)

= The way the inputs affect the model state and the objectives of the
analysis

e Number of possible simulation paths through a model
e Portions of the model that cannot be reached

e Large signal count in the model

The following sections describe techniques designed to reduce the impact of
this complexity and achieve the best performance from the Simulink Design
Verifier software.

Most of these techniques focus on test generation for large models. However,
you can use many of them to detect design errors or prove the properties of a
large model and generate counterexamples when a property is disproved. In
addition, “Techniques for Proving Properties of Large Models” on page 14-27
describes specific techniques for proving properties in a large model.

Analyzing a Large Model

Analyzing a Large Model

In this section...

“Types of Large Model Problems” on page 14-3
“Using the Default Parameter Values” on page 14-4
“Modifying the Analysis Parameters” on page 14-5
“Using the Large Model Optimization” on page 14-6

“Stopping the Analysis Before Completion” on page 14-6

Types of Large Model Problems

The Simulink Design Verifier software may encounter some of these problems
when analyzing a large model:

® Unsatisfiable objectives — The software proved there are no test cases that
exercise these test objectives, and did not generate any test cases.

¢ Undecided objectives — The software was not able to satisfy or falsify
these objectives.

® (Objectives with errors — This problem usually occurs when a model
component uses nonlinear arithmetic, which can affect a test objective.

¢ Cannot complete the analysis in the time allotted — This problem may
indicate an area of your model where the software encountered problems,
or you may need to increase value of the Maximum analysis time
parameter.

® Analysis hangs — If the number of objectives processed remains constant
for a considerable length of time, the software has likely encountered
complexity between the model and its objectives.

® Does not achieve a high percentage of model coverage — When you run
the test cases on the harness model, the percentage of model coverage is
insufficient for your design.

The next few sections describe the initial steps to take when analyzing a large

model. Although these steps address test generation, you can use a similar
approach when detecting design errors or proving properties in a model.

14-3

14 Analyzing Large Models and Improving Performance

Using the Default Parameter Values

When you generate test cases for a model, whether large or small, the first
step is to analyze the model using the Simulink Design Verifier default
parameter values:

1 Check to see if your model is compatible with the Simulink Design Verifier
software, as described in Chapter 3, “Ensuring Compatibility with the
Simulink® Design Verifier Software”.

2 Using the default parameter values, analyze the model. The following table
lists the default values for parameters in the Configuration Parameters
dialog box that you might change when analyzing large models.

Parameter Default Value | Description
Maximum 600 (seconds) If the analysis does not finish
analysis time within the specified time,
the analysis times out and
terminates.
Test suite Combined Generates test cases that address
optimization objectives more than one test objective (if
possible).
Model coverage | MCDC Generates test cases that achieve
objectives modified condition/decision

coverage (MCDC), which includes
decision coverage (DC) and
condition coverage (CC).

Note MCDC test cases are not
generated for XOR configured
logic operators. You can achieve
MCDC coverage by using

the same tests that would be
generated from AND configured
blocks or OR configured blocks.

14-4

Analyzing a Large Model

3 Review the following information in the Simulink Design Verifier log
window while the analysis runs:

e Number of objectives processed — How many objectives were processed?
Did the analysis hang after processing a certain number of objectives?
The answers to these questions might give you a clue about where a
problem might lie.

e Number of objectives satisfied/Number of objectives falsified — Which
objectives were falsified?

* Time elapsed — Did the analysis time out, or did it finish within the
specified maximum analysis time?

4 When the analysis completes, generate and review the Simulink Design
Verifier HTML report. This report contains links to the model elements
for satisfied and falsified objectives so you can see what portions of the
model might have problems.

5 For a test-case generation analysis, if all the test objectives have been
satisfied, run the test cases on the harness model to determine model
coverage.

If model coverage is sufficient, you do not need to do anything else. If the
coverage 1is not sufficient, take additional steps to improve the analysis
performance, as described in the following sections.

Note A large percentage of falsified objectives and poor model coverage
often indicate that you need to change model parameter values to get
complete coverage. This can occur when you have tunable parameters in
Constant blocks that are connected to enabled subsystems or to the trigger
inputs of Switch blocks. In these situations, configure Simulink Design
Verifier parameter support as described in Chapter 5, “Specifying Parameter
Configurations”.

Modifying the Analysis Parameters

If the analysis satisfied most but not all of the objectives, try the following
steps:

14-5

14 Analyzing Large Models and Improving Performance

14-6

1 Increase the Maximum analysis time parameter. Such an increase gives
the analysis more time to satisfy all the objectives.

2 Set the Model coverage objectives parameter to Decision. Selecting
this option generates only test cases that achieve decision coverage. These
test cases are a subset of the MCDC option.

3 Rerun the analysis and review the report.

If the results are still not satisfactory, try the techniques described in the
following sections.

Using the Large Model Optimization

Set the Test suite optimization parameter to Large model, and rerun the
Simulink Design Verifier analysis.

The large model optimization strategy is designed for large, complex models.
It may or may not improve the results of your analysis enough to fully test
your design.

If there are outstanding objectives you want the software to generate,
continue with the following techniques.

Stopping the Analysis Before Completion

Watch the Objectives processed value in the log window. If about 50
percent of the Maximum analysis time parameter has elapsed and this
value does not increase, the model analysis may have trouble processing
certain objectives. If the analysis does not progress, take the following steps:

1 Click Stop in the log window.

The following dialog box appears.

Analyzing a Large Model

r Analysis was aborted E (=] @

Do pou want to produce resulks?

Yes | No |

2 Click Yes to save the results of the analysis so far.

The log window lists the following options, depending on which analysis
mode you ran:

* Highlight analysis results on model
¢ Generate detailed analysis report
¢ Create harness model

¢ Simulate tests and produce a model coverage report
3 Click Generate detailed analysis report.

4 In the HTML report, review the following sections to identify the model
elements that are causing problems:

® Objectives Undecided when the Analysis was Stopped

¢ Objectives Producing Errors

5 Review the model elements that have undecided objectives or objectives
with errors to see if any of the following problems are present. Consult the
respective documentation for specific techniques to improve the analysis.

14-7

14 Analyzing Large Models and Improving Performance

14-8

Problem in your model

More information

Floating-point inputs

“Managing Model Data to Simplify
the Analysis” on page 14-10

Nonlinear operations

¢ “Analyzing the Model Using a
Bottom-Up Approach” on page
14-16

¢ “Analyzing Logical Operations”
on page 14-23

Large state spaces

“Handling Models with Large State
Spaces” on page 14-24

Large timers and time delays

“Handling Problems with Counters
and Timers” on page 14-25

Generating Reports for Large Models

Generating Reports for Large Models

When you analyze a model with a large root-level input signal count, you may
encounter an insufficient memory error when the Simulink Design Verifier
software 1s generating the report.

When this occurs, you need to increase the amount of memory the Sun Java
Virtual Machine (JVM™) software can allocate. For steps on how to increase
this memory, see “Increasing the MATLAB JVM Memory Allocation Limit” in
the MATLAB® Report Generator™ documentation.

14-9

14 Analyzing Large Models and Improving Performance

Managing Model Data to Simplify the Analysis

14-10

In this section...

“Simplifying Data Types” on page 14-10
“Constraining Data” on page 14-10

Simplifying Data Types

One way to simplify your model is to use for the designated signal data type a
data type requiring the smallest space for the expected data. For example, do
not use an int data type for Boolean data, because only one bit is required
for Boolean data.

In another example, suppose you have a Sum block with two inputs that are
always integers between —10 and 10. Set the Output data type parameter
to int8, rather than int32 or double, or any other data type that requires
more space than necessary.

To display the signal data types in the model window, select
Format > Port/Signal Displays > Port Data Types.

Constraining Data

Another effective technique for reducing complexity is to restrict the inputs
to a set of representative values or, ideally, a single constant value. This
process, called discretization, treats the input as if it were an enumeration.
Discretization allows you to handle nonlinear arithmetic from multiplication
and division in the simplest way possible.

The following model has a Product block feeding a Saturation block.

Managing Model Data to Simplify the Analysis

x >
Ot
[:) Saturation

Pmoduct

The Simulink Design Verifier software generates errors when attempting

to satisfy the upper and lower limits of the Saturation block, because the
software does not support nonlinear arithmetic. To work around these errors,
restrict one of the inputs to a set of discrete values.

Identify discrete values that are required to satisfy your testing needs. For
example, you may have an input for model speed, and your design contains
paths of execution that are conditioned on speed above or below thresholds of
80, 150, 600, and 8000 RPM. For an effective analysis, constrain speed values
to be 50, 100, 200, 1000, 5000, or 10000 RPM so that every threshold can

be either active or inactive.

If you need to use more than two or three values, consider specifying the
constrained values using an expression like

num2cell(minval:increment:maxval)

Using the previous example model, restrict the second input (y) to be either 1,
2, 5, or 10 using the Test Condition block as shown in the following model.
The Simulink Design Verifier software produces test cases for all inputs.

14-11

14 Analyzing Large Models and Improving Performance

14-12

X
{12510} = >
Satumation Outt
o —H—

¥

Froduct

You can also constrain signals that are intermediate or output values

of the model. Constraining such signals makes it easier to work around
multiplication or division inside lower level subsystems that do not depend
on model inputs.

Note Discretization is best limited to a small number of inputs (less than
10). If your model requires discretization of many inputs, try to achieve model
coverage through successive simulations, as described in “Partitioning Model
Inputs and Generating Tests Incrementally” on page 14-14.

Test Condition blocks do not need to be placed exactly on the inputs. In
deciding where to place the constraints in your model, consider the following
guidelines:

® Favor constraints on the input values because the software can process
inputs easier.

¢ If you need to place constraints on both the input and the output, for
example, to avoid nonlinear arithmetic, one of the constraints should be
a range such as [minval maxval]. The software first tests the values at
both ends of the range and can return a test case, even if the underlying
calculations are nonlinear.

¢ Make sure that constraints at corresponding input and output points are
not contradictory. Do not constrain the output signals to values that are
not achievable because of the constraints on the input values.

Managing Model Data to Simplify the Analysis

® Avoid creating constraints that contradict the model. Such contradictions
occur when a constraint can never be satisfied because it contradicts some
aspect of the model or another constraint. Analyzing contradictory models
can cause the Simulink Design Verifier software to hang.

The next model is a simple example of a contradictory model. The second
input to the Multiply block is the constant 1, but the Test Condition block
constrains it to a value of 2, 5, or 10. The analysis cannot achieve all the

test objectives in this model.

L4
{2 510} * >

Cutl

Satumation

1 —(& —»

Constant

FProduct

® When you work with large models that have many multiplication and
division operations, you may find it easier to add constraints to all of the
floating-point inputs rather than to identify the precise set of inputs that
require constraints.

14-13

14 Analyzing Large Models and Improving Performance

Partitioning Model Inputs and Generating Tests
Incrementally

14-14

As described in “Constraining Data” on page 14-10, you can constrain the
values of model inputs using the Simulink Design Verifier Test Condition
block.

Like other Simulink parameters, constraint values can be shared across
several blocks by referencing a common workspace variable; you can initialize
constraint values using MATLAB commands. If you have several inputs
related to speed, such as desired speed, measured speed, and average speed,
you might choose to constrain all of them to the same set of values.

As an advanced technique for experienced MATLAB programmers, you can
use parameterized constraints and successive runs of the Simulink Design
Verifier software to implement an incremental test-generation technique:

1 Partition model inputs so that some are held constant, some are constrained
to sets of constants using the Test Condition block, and some can have
any value.

2 Generate test cases and run those test cases to collect model coverage.
3 Choose new values and partition the inputs with these new values.

4 Generate test cases for missing coverage using the sldvgencov function
and the current test coverage.

Note The Extending an Existing Test Suite demo shows how to extend a
test suite so that it satisfies missing model coverage.

5 Repeat steps 3 and 4 until you have generated sufficient coverage.
Partition the model inputs that enable further simplification when an analysis
runs. Consider the following model, which has three mutually independent

enabled subsystems:

e Normal Mode

Partitioning Model Inputs and Generating Tests Incrementally

g

e Shutdown Mode
e Failure Mode

3
=
=%
m

g

!

P [Il

=
[N]

T (1] otz p—

:

=)
(7]

T

In1

] iz

Mormal Mode

_b. == ﬁ
o [n
p]inz Outl |——) Merge ———— o 1)
b’ In2 Outl

Shutdown Mode

In&

[

InF

P [Il
iz Ot ——
' [t

Failure Mode

herge

You can incrementally generate test cases for each subsystem by constraining
the first input to the appropriate constant value before running an analysis.
In this way, as you create test cases for each subsystem, the software ignores
the complexity of the other two subsystems.

14-15

14 Analyzing Large Models and Improving Performance

Analyzing the Model Using a Bottom-Up Approach

14-16

Simulink Design Verifier software works most effectively at analyzing large
models using a bottom-up approach. In this approach, the software analyzes
smaller model components first, which can be faster than using the Large
model test suite optimization.

The bottom-up approach offers several advantages:

¢ [t allows you to solve the problems that slow down error detection, test
generation, or property proving in a controlled environment.

® Solving problems with small model components before analyzing the model
as a whole is more efficient, especially if you have unreachable components
in your model that you can only discover in the context of the model.

® You can iterate more quickly—find a problem and fix it, find another
problem and fix it, and so on.

e If one model component has a problem, for example, it’s unreachable,
that situation can prevent the software from generating tests for all the
objectives in a large model.

Try this workflow with your large model:

1 Break down the model into components of 100-1000 objectives each. Use
the sldvextract function to extract components into a new model for
analysis purposes.

2 Analyze the individual components, starting with the lowest level
subsystems.

3 Fix any problems by adding constraints or specifying block replacements.

4 After you analyze the smaller components, reapply the necessary
constraints and substitutions to the original model and analyze the full
model.

When you finish a bottom-up analysis, you should have a top-level model
that the Simulink Design Verifier software can analyze quickly.

Extracting Subsystems for Analysis

Extracting Subsystems for Analysis

In this section...

“Overview of Subsystem Extraction” on page 14-17

“sldvextract Function” on page 14-18

“Structure of the Extracted Model” on page 14-18

“Analyzing Subsystems That Read from Global Data Storage” on page 14-18

“Analyzing Function-Call Subsystems” on page 14-20

Overview of Subsystem Extraction

If you have a large model that slows down your analysis or has unreachable
objectives, you may want to analyze atomic subsystems or Stateflow atomic
subcharts using the Simulink Design Verifier software. This technique
allows you to implement a bottom-up approach to analyzing a large model,
as described in “Analyzing the Model Using a Bottom-Up Approach” on page
14-16.

When you analyze a subsystem or atomic subchart, the software:

* Extracts the subsystem or subchart into a new model.

¢ If required, adds blocks to the newly created model that replicate the
execution context of the subsystem or subchart within its parent model.

® Analyzes the extracted model and produces results.

Note The Simulink Design Verifier software can only analyze atomic
subsystems and atomic subcharts.

For more information about analyzing subsystems, see “Analyzing a
Subsystem” on page 1-30.

For more information about analyzing atomic subcharts, see “Analyzing a
Stateflow Atomic Subchart” on page 1-32.

14-17

14 Analyzing Large Models and Improving Performance

14-18

sldvextract Function

The sldvextract function allows you to extract subsystems and atomic
subcharts for component verification, as described in Chapter 10, “Verifying
Model Components”. By extracting the subsystem or atomic subchart, you can
verify the component in isolation from the rest of the system, allowing you to
test the correctness of the component algorithm.

Structure of the Extracted Model

When you analyze a subsystem or atomic subchart, the Simulink Design
Verifier software creates a new model that contains the subsystem or atomic
subchart, and any input and output ports that correspond to the ports
connected to the original subsystem. The software assigns the following
properties to the ports in the new model, as determined by compiling the
original model:

® Data types
® Sample rates

® Signal dimensions

The software names the new model subsystem name.mdl, where name is the
subsystem_name of the subsystem.

The next sections provide examples of how the Simulink Design Verifier
software extracts and analyzes subsystems.

Analyzing Subsystems That Read from Global Data
Storage

A data store is a repository to which you can write data, and from which you
can read data, without having to connect an input or output signal directly
to the data store.

You create a data store using a Data Store Memory block or a
Simulink.Signal object. The Data Store Memory block or Simulink.Signal
object represents the data store and specifies its properties. Every data store
must have a unique name.

Extracting Subsystems for Analysis

When you analyze a subsystem that reads data from a data store that is
accessed outside the subsystem, the analysis:

e Adds a Data Store Memory block to the new model.

¢ Adds an input port that writes to the data store. Since the input writes to
the data store, the data can have any values (within the specified data
type) for the purpose of the Simulink Design Verifier analysis.

If the data store specifies minimum and maximum values, those values
are assigned to the new input port.

The following example analyzes a subsystem in the s1_subsys_fcncall8
demo model:

1 Open the s1_subsys fcncall8 demo model:

sl _subsys_fcncall8

This model defines a data store A, from which the atomic subsystem Reader
reads data using a Data Store Read block.

2 Right-click the Reader subsystem and select Design Verifier > Generate
Tests for Subsystem.

The Simulink Design Verifier log window shows that the software extracts
the subsystem into a new model named Reader, analyzes the extracted
model, and offers you the choice of which results to produce.

3 Open the new Reader model that the software created in
matlabroot\sldv_output\Reader

14-19

14 Analyzing Large Models and Improving Performance

pr

EJ Reader

File Edit Wiew Sirmulation Format Teools Help

hzEES

= = » 100 [Nomal ~|| E

i :l

¥
Fuanc:tiond}
Outs >
Dt
Reader
1T 3
100% FixedStepDiscrete

Ready

14-20

The new Inport block A writes into the data store, which is used by the
subsystem Reader in the new model.

Analyzing Function-Call Subsystems

A function-call subsystem 1s a triggered subsystem whose execution 1s
determined by logic internal to a C MEX S-function instead of by the value of
a signal. Function-call subsystems are always atomic.

The Simulink Design Verifier analysis creates an Inport block and subsystem
in the new model to mimic the function-call trigger for the subsystem.

Extracting Subsystems for Analysis

The following example analyzes the function-call subsystem in the
sldemo_autotrans model:

1 Open the sldemo_autotrans demo model:
sldemo_autotrans

This model contains a design for an automotive drive train, and has a
function-call subsystem named ThresholdCalculation. This function-call
subsystem is triggered by the CALC_TH state in the Stateflow chart
ShiftLogic.

2 Right-click the ThresholdCalculation subsystem and select Design
Verifier > Generate Tests for Subsystem.

The Simulink Design Verifier log window shows that the software extracts
the subsystem into a new model named ThresholdCalculation, analyzes
the extracted model, and offers you the choice of which results to produce.

3 Open the new ThresholdCalculation model that the software created in
matlabroot\sldv_output\ThresholdCalculation

-

E_l ThresholdCalculation EI@

File Edit Wiew Simulation Format Tools Help

b= Ed&

>

gear

I e

throttle ThresholdCalculation

gear

g

Ready 100% ode5

14-21

14 Analyzing Large Models and Improving Performance

The Inport block and the new subsystem block mimic the trigger
for the function-call subsystem ThresholdCalculation in the new
ThresholdCalculation model.

14-22

Analyzing logical Operations

Analyzing Logical Operations

If you have a Simulink model with both logical and arithmetic operations,
consider analyzing only the logical operations.

The Simulink Design Verifier software does not support nonlinear arithmetic
of floating-point numbers, as occurs with multiplication or division, unless
one of the multiply operands or the divisor is a constant.

To simplify models that contain integers or floating-point numbers, the
software maps the model computations into expressions of Boolean variables.
For example, the software might represent an eight-bit number as a set of
eight Boolean values, with one for each digit. It might represent a bitwise OR
operation of two eight-bit integers as eight separate logical OR operations.

Mapping problems of one data type into Boolean variables is complex, and
this complexity increases when the software performs such mapping. The
software handles models with predominantly logical signals more efficiently
than it does those with large integer or floating-point signals.

Note Simulink Design Verifier software can handle floating-point inputs
when their values impact the design through linear inequalities such as x <y
or a > 0.

In addition, input complexity can result from certain cast operations. For
example, casting a double to an int8 can introduce a nonlinearity in certain
situations.

14-23

14 Analyzing Large Models and Improving Performance

Handling Models with Large State Spaces

14-24

Persistent design variables (variables that are assigned in one time step and
used in a later time step during simulation) affect the complexity of analysis
in much the same way as input complexity. You can use one or more of the
following techniques to simplify the complexity of the state space you want to
search:

® Apply constraints to input signals that are delayed.

¢ Constraint the inputs to states that are contained within conditionally
executed subsystems.

¢ Limit the number of test case steps by setting the Maximum test case
step parameter to 20.

® Increase the sample time for part or all of the model. (This procedure is
similar to reducing timer thresholds, as described in “Handling Problems
with Counters and Timers” on page 14-25.) A test case that you generate
at a lower sample rate often has similarities to the test case with a high
sample rate that you need to achieve an objective.

States that are computed from previous state values present a special
challenge. For example, if you want to restrict the integrator value in a PID
controller, you can only use a set of values that includes all reachable values
from the initial value. Otherwise, the input must be forced to 0. Neither

of these limitations is practical and would probably make the analysis less
complete.

Alternatively, you can use any existing simulation data to help satisfy your
testing needs. If you have existing test data, run it on your model and collect
model coverage. Using the sldvgencov function, you can ignore model
coverage objectives that have already been satisfied in simulation when you
supply a coverage data object.

Note For more information on satisfying missing model coverage, see the
Extending an Existing Test Suite demo.

Handling Problems with Counters and Timers

Handling Problems with Counters and Timers

Complexity from states occurs from both the size of the state representation
and the number of time steps required to transition from one state to another.
The Simulink Design Verifier analysis searches through sequences of time
steps, starting from the default configuration, to find input values that reach
a state that satisfies an objective.

Note For the purposes of Simulink Design Verifier analysis, the term
configuration refers to a set of values for all the persistent information in
your model.

The search process investigates all configurations that can be reached in

a single time step before considering any of the configurations that can be
reached in two time steps. Likewise, the search investigates all configurations
that can be reached in two time steps before it considers any configuration
that requires three or more time steps, etc.

Models that contain time delays, such as countdown timers, hinder the
analysis by forcing the search to span large numbers of time steps. By design,
the value of a counter can reach n only when its previous value is n — 1.

You may see similar effects when systems use extensive averaging and
filtering to delay the response to a change in inputs. Any aspect of the design
that delays the response causes the test sequences to contain more time steps,
resulting in longer test cases that are more difficult to identify.

Some basic techniques you can use to improve performance in models that
have delays include the following:

® Make time delays tunable parameters. Choose very small values when
running an analysis. A system with a logical error when a time delay is set
to 2000 steps usually demonstrates that error if the time delay is changed
to 2 steps. If your system has several delays, choose small but unique
values for each of them so that your delays are progressively satisfied.

¢ Choose higher frequency cutoffs for filters and fewer samples to average to
minimize filtering delays.

14-25

14 Analyzing Large Models and Improving Performance

e Make the initial values of counters and timers parameter values that the
Simulink Design Verifier software can modify. The software finds initial
values that allow shorter test cases to exceed thresholds.

14-26

Techniques for Proving Properties of Large Models

Techniques for Proving Properties of Large Models

Property proving uses the same underlying techniques as design error
detection and test generation and suffers from the same performance
limitations. However, unlike design error detection or test generation, you
often cannot simplify the problem without compromising the validity of the
results.

You can quickly prove simple proof objectives that are not affected by
model dynamics. However, a successful proof requires that the Simulink
Design Verifier software search through all reachable configurations of your
model—even the ones that are reached only after long time delays. The
computation time and memory required to search a model completely often
make an exhaustive proof impractical.

There are two techniques you can use to improve the performance of property
proving in a large model:

In this section...

“Finding Property Violations While Designing Your Model” on page 14-27

“Combining Proving Properties and Finding Proof Violations” on page 14-28

Finding Property Violations While Designing Your
Model

Simulink Design Verifier software offers a strategy that quickly identifies
property violations in larger, more complicated models. While designing your
model, analyze your model using this strategy so that you can fix any property
violations before finalizing your design.

To identify property violations of a model, on the Design Verifier >
Property Proving pane of the Configuration Parameters dialog box, specify
the value of the Strategy parameter as FindViolation. When you use this
strategy, the Maximum violation steps parameter becomes active so that
you can specify an upper bound for the number of time steps in the search.

When analyze the model, the software searches only for property violations
within the specified number of time steps. By identifying and fixing the

14-27

14 Analyzing Large Models and Improving Performance

14-28

property violations first, you improve the performance of a property-proving
analysis that uses the Prove strategy.

If a violation is not detected, it 1s impossible to violate the property with

any input sequence having fewer time steps than the specified limit.
However, you cannot prove that the property is true because there might be a
counterexample within more time steps than the specified limit.

Combining Proving Properties and Finding Proof
Violations

Use the following technique for proving properties in large model. This
technique combines proving and searching for violations:

1 On the Design Verifier > Property Proving pane, set the Strategy
parameter to Prove.

2 On the Design Verifier pane, use a relatively short value for the
Maximum analysis time parameter, such as 5—-10 minutes. If there are
trivial counterexamples—or if your properties do not depend on model
dynamics—the analysis should complete in that amount of time.

3 Change the Strategy parameter to FindViolation, and choose a small
bound for the Maximum violation steps parameter, such as 4, 5, or 6. If
your properties have simple counterexamples, the software should discover
them.

4 If you do not find any violations with a small bound, increase the bound
and look for longer counterexamples.

a Increase the bound in several increments, and observe the processing
time and memory consumption. System resources might limit the length
of violation that can be searched.

b In addition, consider the dynamics of your model and the number of time
steps needed to transition between an arbitrary pair of configurations. If
you choose too large a bound, the violation search can be more complex
than the unbounded proof.

Techniques for Proving Properties of Large Models

5 If you can run violation searches with relatively large bounds, e.g., 30-50
time steps, switch back to the Prove strategy, and use a longer time limit,
such as several hours.

14-29

14 Analyzing Large Models and Improving Performance

14-30

Simulink Design Verifier
Configuration Parameters

® “Overview of Simulink® Design Verifier Configuration Parameters” on

page 15-2

® “Design Verifier Pane

”

® “Design Verifier Pane:

® “Design Verifier Pane:

® “Design Verifier Pane:

® “Design Verifier Pane:

® “Design Verifier Pane:

® “Design Verifier Pane:

® “Design Verifier Pane:

on page 15-3

Block Replacements” on page 15-13
Parameters” on page 15-18

Test Generation” on page 15-21
Design Error Detection” on page 15-34
Property Proving” on page 15-37
Results” on page 15-43

Report” on page 15-58

¢ “Parameter Command-Line Information Summary” on page 15-64

15 simulink® Design Verifier™ Configuration Parameters

15-2

Overview of Simulink Design Verifier Configuration

Parameters

The Simulink Design Verifier software provides numerous options in the
Configuration Parameters dialog box that control its behavior when analyzing
models. To view the options related to Simulink Design Verifier, in the model
window, select Tools > Design Verifier > Options.

The Configuration Parameters dialog box opens; the Design Verifier panes
are listed in the Select pane on the left-hand side.

Typically, you specify values for these options using the Configuration
Parameters dialog box. See “Configuration Parameters Dialog Box” in
Simulink Graphical User Interface for more information about working with
this interface.

Note By default, Simulink Design Verifier options do not appear in a model’s
Configuration Parameters dialog box. In the model window, if you select
Tools > Design Verifier > Options, the Simulink Design Verifier software
initially associates its default options with that model. After you save the
model, you access the Simulink Design Verifier options directly from the
Configuration Parameters dialog box or from the Model Explorer.

Alternatively, you can use the sldvoptions function to view Simulink Design
Verifier options at the command line. Use the following syntax to view
programmatically the options associated with a Simulink model:

opts = sldvoptions('model_name');
get(opts)

Design Verifier Pane

Design Verifier Pane

Analysis options

Mode: |Test generation -

Maximum analysis time (s): 300
Display unsatisfiable test objectives
¥| Automatic stubbing of unsupported blocks and functions

¥| Use specified input minimum and maximum values
Output

Output directory: sldv_output/sModelNames

¥| Make output file names unique by adding a suffix

| Check Model Compatibility |

| Generate Tests |

In this section...

“Design Verifier Pane Overview” on page 15-4

“Mode” on page 15-4

“Maximum analysis time” on page 15-6

“Display unsatisfiable test objectives” on page 15-7

“Automatic stubbing of unsupported blocks and functions” on page 15-8
“Use specified input minimum and maximum values” on page 15-9

“Output directory” on page 15-10

“Make output file names unique by adding a suffix” on page 15-12

15-3

15 simulink® Design Verifier™ Configuration Parameters

15-4

Design Verifier Pane Overview

Specify analysis options and configure Simulink Design Verifier output.

Mode

Specify the analysis mode for the Simulink Design Verifier software.

Settings
Default: Test generation

Design error detection
Detects integer and fixed-point overflow errors and division-by-zero
errors in a model

Test generation
Generates test cases for a model.

Property proving
Proves properties of a model.

Tip

The Simulink Design Verifier software specifies the value of this option
automatically when you select one of the following menu options:

® Tools > Design Verifier > Generate Tests

¢ Tools > Design Verifier > Detect Design Errors

® Tools > Design Verifier > Prove Properties

Dependency

Selecting Test generation enables the Display unsatisfiable test
objectives parameter.

When you set the Mode parameter, the button below Check Model
Compatibility changes as follows:

® Mode: Test generation, button reads: Generate Tests

® Mode: Design error detection, button reads: Detect Errors

Design Verifier Pane

® Mode: Property proving, button reads: Prove Properties

Command-Line Information

Parameter: DVMode

Type: string

Value: 'TestGeneration' | 'ErrorDetection' | 'PropertyProving'
Default: 'TestGeneration'

See Also

¢ Detecting Design Errors
® Generating Test Cases

® Proving Properties of a Model

15-5

15 simulink® Design Verifier™ Configuration Parameters

15-6

Maximum analysis time

Specify the maximum time (in seconds) that the Simulink Design Verifier
software spends analyzing a model.

Settings
Default: 300

The value that you enter represents the maximum number of seconds the
Simulink Design Verifier software analyzes your model.

Command-Line Information

Parameter: DVMaxProcessTime
Type: double

Value: any valid value
Default: 300

Design Verifier Pane

Display unsatisfiable test objectives

Specify whether to display warnings if the analysis detects unsatisfiable test
objectives.

Settings
Default: Off

I_On

Displays a warning in the Simulation Diagnostics Viewer when the
Simulink Design Verifier software is unable to satisfy a test objective.

V' ofr

Does not display a warning when the Simulink Design Verifier software
is unable to satisfy a test objective.

Tip If you first select Display unsatisfiable test objectives, set the Test
suite optimization option to the Combined objectives strategy and
analyze the model. If that test returns objectives without outcomes, then
select the Individual objectives strategy and reanalyze the model. The
Individual objectives strategy analyzes each objective independently and
more accurately identifies unsatisfiable objectives.

Command-Line Information

Parameter: DVDisplayUnsatisfiableObjectives
Type: string

Value: 'on' | 'off'

Default: 'off'

15-7

15 simulink® Design Verifier™ Configuration Parameters

15-8

Automatic stubbing of unsupported blocks and
functions

Specify whether or not Simulink Design Verifier software should ignore
unsupported blocks and functions and proceed with the analysis.

Settings
Default: On

¥ on
Ignores unsupported blocks and functions and proceeds with the
analysis.

I off
Displays a warning when the Simulink Design Verifier software
encounters an unsupported block or function and asks if you want to
continue the analysis.

Command-Line Information

Parameter: DVAutomaticStubbing
Type: string

Value: 'on' | 'off'
Default: 'on'
See Also

Handling Incompatibilities with Automatic Stubbing

Design Verifier Pane

Use specified input minimum and maximum values

Specify whether or not Simulink Design Verifier software should generate test
cases that consider specified minimum and maximum values as constraints
for all input signals in your model.

Settings
Default: On

¥ On
Considers specified minimum and maximum values as constraints for
all input signals.

I ofr

Ignores any specified minimum and maximum values.

Command-Line Information

Parameter: DVDesignMinMaxConstraints
Type: string

Value: 'on' | 'off'
Default: 'on'
See Also

Considering Specified Minimum and Maximum Values for Inputs During
Analysis

15-9

15 simulink® Design Verifier™ Configuration Parameters

Output directory

Specify a path name to which the Simulink Design Verifier software writes its
output.

Settings
Default: sldv_output/$ModelName$

¢ Enter a path that is either absolute or relative to the current folder.

® $ModelName$ is a token that represents the model name.

Ti
Yoi can use the following parameters to customize the names and locations
of Simulink Design Verifier output:
® On the Results pane:
= Data file name
= Harness model file name
= SystemTest file name
* On the Report pane:
= Report file name
= File path of the output model
* On the Block Replacements pane:
= File path of the output model

Command-Line Information

Parameter: DVOutputDir

Type: string

Value: any valid path

Default: 'sldv_output/$ModelName$'

15-10

Design Verifier Pane

See Also
Reviewing the Results

15-11

15 simulink® Design Verifier™ Configuration Parameters

Make output file names unique by adding a suffix

Specify whether the Simulink Design Verifier software makes its output file
names unique by appending a numeric suffix.

Settings
Default: On

¥ On
Appends an incremental numeric suffix to Simulink Design Verifier
output file names. Selecting this option prevents the software from
overwriting existing files that have the same name.

" o
Does not append a suffix to Simulink Design Verifier output file names.
In this case, the software might overwrite existing files that have the
same name.

Command-Line Information

Parameter: DVMakeOutputFilesUnique
Type: string

Value: 'on' | 'off'
Default: 'on'
See Also

Reviewing the Results

15-12

Design Verifier Pane: Block Replacements

Design Verifier Pane: Block Replacements

Block replacements

Apply block replacements

List of block replacement rules (in order of priority):

Output model

File path of the ocutput model:

In this section...

“Block Replacements Pane Overview” on page 15-14
“Apply block replacements” on page 15-15

“List of block replacement rules” on page 15-16

“File path of the output model” on page 15-17

15-13

15 simulink® Design Verifier™ Configuration Parameters

Block Replacements Pane Overview
Specify options that control how the Simulink Design Verifier software
preprocesses the models it analyzes.

See Also
Working with Block Replacements

15-14

Design Verifier Pane: Block Replacements

Apply block replacements

Specify whether the Simulink Design Verifier software replaces blocks in
a model before its analysis.

Settings
Default: Off

I On
Replaces blocks in a model before the Simulink Design Verifier software
analyzes it.

V' ofr

Does not replace blocks in a model before the Simulink Design Verifier
software analyzes it.

Dependencies

This parameter enables List of block replacement rules and File path of
the output model.

Command-Line Information

Parameter: DVBlockReplacement
Type: string

Value: 'on' | 'off!'

Default: 'off'

See Also
Working with Block Replacements

15-15

15 simulink® Design Verifier™ Configuration Parameters

15-16

List of block replacement rules

Specify a list of block replacement rules that the Simulink Design Verifier
software executes before its analysis.

Settings
Default: <FactoryDefaultRules>

® Specify block replacement rules as a list delimited by spaces, commas,
or carriage returns.

® The Simulink Design Verifier software processes block replacement rules
in the order that you list them.

¢ If you specify the default value, the Simulink Design Verifier software uses
its factory default block replacement rules.

Dependency

This parameter is enabled when you select Apply block replacements.

Command-Line Information

Parameter: DVBlockReplacementRulesList
Type: string

Value: any rules

Default: '<FactoryDefaultRules>'

See Also
Working with Block Replacements

Design Verifier Pane: Block Replacements

File path of the output model

Specify a folder and file name for the model that results after applying block
replacement rules.

Settings
Default: $ModelName$ replacement

e QOptionally, enter a path that is either absolute or relative to the path name
specified in Output directory.

e Enter a file name for the model that results after applying block
replacement rules.

® $ModelName$ is a token that represents the model name.

Dependency

This parameter is enabled when you select Apply block replacements.

Command-Line Information

Parameter: DVBlockReplacementModelFileName
Type: string

Value: any valid path and file name

Default: '$ModelName$_replacement'

See Also
Working with Block Replacements

15-17

15 simulink® Design Verifier™ Configuration Parameters

Design Verifier Pane: Parameters

Farameters
Apply parameters

Parameter configuration file: Browse Edit

In this section...

“Parameters Pane Overview” on page 15-19
“Apply parameters” on page 15-19

“Parameter configuration file” on page 15-19

15-18

Design Verifier Pane: Parameters

Parameters Pane Overview

Specify options that control how the Simulink Design Verifier software uses
parameter configurations when analyzing models.

Apply parameters

Specify whether the Simulink Design Verifier software uses parameter
configurations when analyzing a model.

Settings
Default: Off

I_On

The Simulink Design Verifier software uses parameter configurations
when analyzing a model.

V' off

The Simulink Design Verifier software does not use parameter
configurations when analyzing a model.

Dependency

This parameter enables Parameter configuration file.

Command-Line Information

Parameter: DVParameters
Type: string

Value: 'on' | 'off!'
Default: 'off'

See Also
Specifying Parameter Configurations

Parameter configuration file

Specify a MATLAB function that defines parameter configurations for a
model.

15-19

15 simulink® Design Verifier™ Configuration Parameters

15-20

Settings
Default: sldv_params_template.m

® The default file, sldv_params_template.m, is a template that you can edit
and save. The comments in the template explain the syntax you use to
specify parameter configurations.

® (Click the Browse button to select an existing MATLAB file.
¢ (Click the Edit button to open the specified MATLAB file in an editor.

Dependency
This parameter is enabled by Apply parameters.

Command-Line Information

Parameter: DVParametersConfigFileName
Type: string

Value: any valid MATLAB file

Default: 'sldv_params_template.m'

See Also
Specifying Parameter Configurations

Design Verifier Pane: Test Generation

Design Verifier Pane: Test Generation

Test generation

Model coverage objectives: IMCDC

Test conditions: ’Use local settings

Test objectives: ’Use local settings

Maximum test case steps: 500

Test suite optimization: ’ CombinedObjectives

Existing test cases

[] Extend existing test cases:

Data file: Browse
Ignore objectives satisfied by existing test cases

Existing coverage data

[7] Ignore objectives satisfied in existing coverage data:

Coverage data file: Browse

In this section...

“Test Generation Pane Overview” on page 15-23
“Model coverage objectives” on page 15-24

“Test conditions” on page 15-25

“Test objectives” on page 15-26

“Maximum test case steps” on page 15-27

“Test suite optimization” on page 15-28
“Extend existing test cases” on page 15-29

“Data file” on page 15-30

“Ignore objectives satisfied by existing test cases” on page 15-31

15-21

15 simulink® Design Verifier™ Configuration Parameters

15-22

In this section...

“Ignore objectives satisfied in existing coverage data” on page 15-31

“Coverage data file” on page 15-32

Design Verifier Pane: Test Generation

Test Generation Pane Overview

Specify options that control how the Simulink Design Verifier software
generates tests for the models it analyzes.

See Also
Generating Test Cases

15-23

15 simulink® Design Verifier™ Configuration Parameters

15-24

Model coverage objectives

Specify the type of model coverage that the Simulink Design Verifier software
attempts to achieve.

Settings
Default: Condition Decision

None
Generates test cases that achieve only the custom objectives that you
specified in your model using, for example, Test Objective blocks.

Decision
Generates test cases that achieve decision coverage.

Condition Decision
Generates test cases that achieve condition and decision coverage.

MCDC
Generates test cases that achieve modified condition/decision coverage

(MCDC).

When you set Model coverage objectives to MCDC, the Simulink Design
Verifier software automatically enables every coverage objective for decision
coverage and condition coverage as well. Similarly, enabling coverage for
condition coverage causes every decision and condition coverage outcome to
be enabled.

Command-Line Information

Parameter: DVModelCoverageObjectives

Type: string

Value: 'None' | 'Decision' | 'ConditionDecision' | 'MCDC'
Default: 'ConditionDecision'

See Also
Generating Test Cases

Design Verifier Pane: Test Generation

Test conditions
Specify whether Test Condition blocks in your model are enabled or disabled.

Settings
Default: Use local settings

Use local settings
Enables or disables Test Condition blocks based on the value of the
Enable parameter of each block. If a block’s Enable parameter is
selected, the block is enabled; otherwise, the block is disabled.

Enable all
Enables all Test Condition blocks in the model regardless of the settings
of their Enable parameters.

Disable all
Disables all Test Condition blocks in the model regardless of the settings
of their Enable parameters.

Command-Line Information

Parameter: DVTestConditions

Type: string

Value: 'UselLocalSettings' | 'EnableAll' | 'DisableAll’
Default: 'UseLocalSettings'

See Also

e Test Condition

® Generating Test Cases

15-25

15 simulink® Design Verifier™ Configuration Parameters

15-26

Test objectives
Specify whether Test Objective blocks in your model are enabled or disabled.

Settings
Default: Use local settings

Use local settings
Enables or disables Test Objective blocks based on the value of the
Enable parameter of each block. If a block’s Enable parameter is
selected, the block is enabled; otherwise, the block is disabled.

Enable all
Enables all Test Objective blocks in the model regardless of the settings
of their Enable parameters.

Disable all
Disables all Test Objective blocks in the model regardless of the settings
of their Enable parameters.

Command-Line Information

Parameter: DVTestObjectives

Type: string

Value: 'UselLocalSettings' | 'EnableAll' | 'DisableAll’
Default: 'UseLocalSettings'

See Also

¢ Test Objective

® Generating Test Cases

Design Verifier Pane: Test Generation

Maximum test case steps

Specify the maximum number of simulation steps the Simulink Design
Verifier software takes when attempting to satisfy a test objective.

The analysis uses the Maximum test case steps parameter during certain
parts of the test-generation analysis to bound the number of steps that test
generation uses. When you set a small value for this parameter, the parts of
the analysis that are bounded complete in less time. When you set a larger
value, the bounded parts of the analysis take longer, but it is possible for
these parts of the analysis to generate longer test cases.

To achieve the best performance, set the Maximum test case steps
parameter to a value just large enough to bound the longest needed test case,
even if the test cases that are ultimately generated are longer than this value.

When you also specify LongTestcases for the Test suite optimization
parameter, the analysis uses successive passes of test generation to extend a
potential test case so that it satisfies more objectives. When this happens, the
analysis applies the Maximum test case steps parameter to each individual
iteration of test generation.

Settings
Default: 500

You can specify a value that represents the maximum number of simulation

steps the Simulink Design Verifier software takes when attempting to satisfy
a test objective.

Command-Line Information

Parameter: DVMaxTestCaseSteps
Type: int32

Value: any valid value

Default: 500

See Also
Generating Test Cases

15-27

15 simulink® Design Verifier™ Configuration Parameters

15-28

Test suite optimization
Specify the optimization strategy to use when generating test cases.

Settings
Default: CombinedObjectives

CombinedObjectives
Minimizes the number of test cases in a suite by generating cases that
address more than one test objective. Each test case tends to be long,
1.e., it includes many time steps.

IndividualObjectives
Maximizes the number of test cases in a suite by generating cases that
each address only one test objective. Each test case tends to be short,
1.e., it includes only a few time steps.

LargeModel
Minimizes the number of test cases in a suite by generating cases that
address more than one test objective. This strategy is tailored for large,
complex models; consequently, it tends to use all the time that the
Maximum analysis time option allots.

LongTestcases
Combines test cases to create a smaller number of test cases. This
strategy generates fewer, but longer, test cases that each satisfy
multiple test objectives and creates a more efficient analysis and
easier-to-review results.

CombinedObjectives (Nonlinear Extended)
Analyzes the model using a variation of the CombinedObjectives
optimization. This optimization includes improved support for nonlinear
arithmetic.

LargeModel (Nonlinear Extended)
Analyzes the model using a variation of the LargeModel optimization.
This optimization includes improved support for nonlinear arithmetic.

Tip

If an analysis using the CombinedOjectives or CombinedObjectives
(Nonlinear Extended) strategy returns unsatisfiable objectives, set
this option to IndividualObjectives and reanalyze the model. The

Design Verifier Pane: Test Generation

IndividualObjectives strategy analyzes each objective independently and
1s better at identifying unsatisfiable objectives.

However, set this option to LargeModel or LargeModel (Nonlinear
Extended) if the model has both of the following characteristics:

® Nonlinearities, such as those that result from multiplying or dividing the
model’s input signals

®* Numerous test objectives, such as those that result when using blocks
that receive model coverage

The LargeModel and LargeModel (Nonlinear Extended) strategies perform
an analysis that is tailored to large, complex models. However, these
strategies tend to use all the time that the Maximum analysis time option
allots.

If you have a large number of test objectives, select LongTestcases for a more
efficient analysis and an easy-to-review report.

Command-Line Information

Parameter: DVTestSuiteOptimization

Type: string

Value: 'CombinedObjectives' | 'IndividualObjectives' |
'LargeModel' | 'LongTestCases' | 'CombinedObjectives (Nonlinear
Extended)' | 'LargeModel (Nonlinear Extended)'

Default: 'CombinedObjectives'

See Also

Generating Test Cases

Extend existing test cases

Extend the Simulink Design Verifier analysis by importing test cases logged
from a harness model or a closed-loop simulation model.

Settings
Default: Off

15-29

15 simulink® Design Verifier™ Configuration Parameters

15-30

™ On
Extends the analysis by using the logged test cases specified in Data
file.

V' ofr

Does not extend the analysis.

Dependency
This parameter enables Data file and Ignore objectives satisfied by
existing test cases.

Command-Line Information

Parameter: DVExtendExistingTests
Type: string

Value: 'on' | 'off'

Default: 'off'

See Also
Extending Existing Test Cases

Data file
Specify a folder and file name for the MAT-file that contains the logged test
case data.

Settings
Default: '

® Specify a folder and file name for the MAT-file that contains the logged
test case data in an sldvData object.

¢ (Click the Browse button to navigate to and select an existing file.

Command-Line Information

Parameter: DVExistingTestFile
Type: string

Design Verifier Pane: Test Generation

Value: any valid path and file name
Default: ''

See Also
Simulink Design Verifier Data Files

Ignore objectives satisfied by existing test cases
Ignore the coverage objectives satisfied by the logged test cases in Data file.

Settings
Default: On

¥ On
Generates results, but excludes coverage objectives satisfied by logged
test cases in Data file from the analysis.

I off
Generates results for the full test suite, including coverage objectives
satisfied by the logged test cases in Data file.

Command-Line Information

Parameter: DVIgnoreExistTestSatisfied
Type: string

Value: 'on' | 'off'
Default: 'on'
See Also

¢ Achieving Test Cases for Missing Model Coverage

¢ Simulink Design Verifier Data Files
Ignore objectives satisfied in existing coverage data

Specify to analyze the model, ignoring satisfied coverage objectives, as
specified in Coverage data file.

15-31

15 simulink® Design Verifier™ Configuration Parameters

15-32

Settings
Default: Off

I-On

Ignores satisfied coverage objectives in Coverage data file during
the analysis.

V' ofr

Generates results for all coverage objectives, including those in
Coverage data file.

Dependency

This parameter enables Coverage data file.

Command-Line Information

Parameter: DVIgnoreCovSatisfied
Type: string

Value: 'on' | 'off'

Default: 'off'

See Also

® Achieving Test Cases for Missing Model Coverage

¢ Simulink Design Verifier Data Files

Coverage data file

Specify a folder and file name for the file that contains data about any
satisfied coverage objectives.

Settings
Default: ''

® Specify the name of the folder and file name that contains the satisfied
coverage objectives data

Design Verifier Pane: Test Generation

Click the Browse button to select an existing MATLAB file.

Command-Line Information

Parameter: DVCoverageDataFile
Type: string

Value: any valid path and file name
Default: ''

See Also
Achieving Test Cases for Missing Model Coverage

15-33

15 simulink® Design Verifier™ Configuration Parameters

Design Verifier Pane: Design Error Detection

15-34

Design Error Detection

/| Integer overflow

| Division by zero

In this section...

“Design Error Detection Pane Overview” on page 15-35
“Integer overflow” on page 15-35

“Division by zero” on page 15-35

Design Verifier Pane: Design Error Detection

Design Error Detection Pane Overview

Specify options that control how the Simulink Design Verifier software
detects runtime errors in the models it analyzes.

Integer overflow

Specify whether to analyze your model for integer and fixed-point data
overflow errors.

Settings
Default: On

I7On

Reports integer or fixed-point data overflow errors in your model.

I off

Does not report integer overflow errors in your model.

Command-Line Information

Parameter: DVDetectIntegerOverflow
Type: string

Value: 'on' | 'off'
Default: 'on'
See Also

Detecting Design Errors

Division by zero
Specify whether to analyze your model for division-by-zero errors.

Settings
Default: On

IFOn

Reports division-by-zero errors in your model.

15-35

15 simulink® Design Verifier™ Configuration Parameters

15-36

™ off

Does not report division-by-zero errors in your model.

Command-Line Information

Parameter: DVDetectDivisionByZero
Type: string

Value: 'on' | 'off'

Default: 'on'

See Also

Detecting Design Errors

Design Verifier Pane: Property Proving

Design Verifier Pane: Property Proving

Property proving

Assertion blocks: [Use local settings v]
Proof assumptions: [Use local settings v]
Strategy: [Prwe -]

Maximum viclation steps:

In this section...

“Property Proving Pane Overview” on page 15-38
“Assertion blocks” on page 15-39
“Proof assumptions” on page 15-40

“Strategy” on page 15-41

“Maximum violation steps” on page 15-42

15-37

15 simulink® Design Verifier™ Configuration Parameters

Property Proving Pane Overview

Specify options that control how the Simulink Design Verifier software proves
properties for the models it analyzes.

See Also
Proving Properties of a Model

15-38

Design Verifier Pane: Property Proving

Assertion blocks

Specify whether Assertion blocks in your model are enabled or disabled.

Settings
Default: Use local settings

Use local settings
Enables or disables Assertion blocks based on the value of the Enable
parameter of each block. If a block’s Enable parameter is selected, the
block is enabled; otherwise, the block is disabled.

Enable all
Enables all Assertion blocks in the model regardless of the settings of
their Enable parameters.

Disable all
Disables all Assertion blocks in the model regardless of the settings of
their Enable parameters.

Command-Line Information

Parameter: DVAssertions

Type: string

Value: 'UselLocalSettings' | 'EnableAll' | 'DisableAll’
Default: 'UseLocalSettings'

See Also

® Assertion

¢ Proving Properties of a Model

15-39

15 simulink® Design Verifier™ Configuration Parameters

15-40

Proof assumptions

Specify whether Proof Assumption blocks in your model are enabled or
disabled.

Settings
Default: Use local settings

Use local settings
Enables or disables Proof Assumption blocks based on the value of the
Enable parameter of each block. If a block’s Enable parameter is
selected, the block is enabled; otherwise, the block is disabled.

Enable all
Enables all Proof Assumption blocks in the model regardless of the
settings of their Enable parameters.

Disable all
Disables all Proof Assumption blocks in the model regardless of the
settings of their Enable parameters.

Command-Line Information

Parameter: DVProofAssumptions

Type: string

Value: 'UselLocalSettings' | 'EnableAll' | 'DisableAll’
Default: 'UseLocalSettings'

See Also

® Proof Assumption

® Proving Properties of a Model

Design Verifier Pane: Property Proving

Strategy

Specify the strategy that the Simulink Design Verifier software uses when
proving properties.

Settings
Default: Prove

Prove
Performs property proofs.

FindViolation
Searches only for property violations within the number of simulation
steps specified by the Maximum violation steps option.

ProveWithViolationDetection
Searches first for property violations within the number of simulation
steps specified by the Maximum violation steps option; then it
attempts to prove properties for which it failed to detect a violation. This
strategy is a combination of the Prove and FindViolation strategies.

Dependency

Selecting FindViolation or ProveWithViolationDetection enables the
Maximum violation steps parameter.

Command-Line Information

Parameter: DVProvingStrategy

Type: string

Value: 'Prove' | 'FindViolation' | 'ProveWithViolationDetection'
Default: 'Prove'’

See Also
Proving Properties of a Model

15-41

15 simulink® Design Verifier™ Configuration Parameters

15-42

Maximum violation steps

Specify the maximum number of simulation steps over which the Simulink
Design Verifier software searches for property violations.

Settings
Default: 20

The Simulink Design Verifier software does not search beyond the maximum
number of simulation steps that you specify. Therefore, it cannot identify
violations that might occur later in a simulation.

Dependency

This parameter is enabled when you set Strategy to Findviolation or
ProveWithViolationDetection.

Command-Line Information

Parameter: DVMaxViolationSteps
Type: int32

Value: any valid value

Default: 20

See Also
Proving Properties of a Model

Design Verifier Pane: Results

Design Verifier Pane: Results

Data file options

#| Save test data to file

Data file name: $ModelNames$_sldvdata
Include expected output values

[] randomize data that do not affect the outcome

Display results on model

Display results of the analysis on the model

Harness model options
Save test harness as model
Harness model file name:

Reference input model in generated harness

SystemTest options
Save test harness as SystemTest TEST-file (will reference saved data file)

SystemTest file name:

In this section...

“Results Pane Overview” on page 15-45

“Save test data to file” on page 15-46

“Data file name” on page 15-47

“Include expected output values” on page 15-48

“Randomize data that does not affect outcome” on page 15-49
“Display results of the analysis on the model” on page 15-50
“Save test harness as model” on page 15-52

“Harness model file name” on page 15-53

15-43

15 simulink® Design Verifier™ Configuration Parameters

In this section...

“Reference input model in generated harness” on page 15-54

“Save test harness as SystemTest TEST-file (will reference saved data file)”
on page 15-56

“SystemTest file name” on page 15-57

15-44

Design Verifier Pane: Results

Results Pane Overview

Specify options that control how the Simulink Design Verifier software
handles the results that it generates.

See Also
Reviewing the Results

15-45

15 simulink® Design Verifier™ Configuration Parameters

15-46

Save test data to file

Save the test data that the Simulink Design Verifier analysis generates to
a MAT-file.

Settings
Default: On

¥ On
Saves the test data that the analysis generates to a MAT-file.

I ofr

Does not save the test data that the analysis generates.

Dependency

This parameter enables Data file name.

Command-Line Information

Parameter: DVSaveDataFile
Type: string

Value: 'on' | 'off'
Default: 'on'
See Also

Simulink Design Verifier Data Files

Design Verifier Pane: Results

Data file name

Specify a folder and file name for the MAT-file that contains the data
generated during the analysis, stored in an sldvData structure.

Settings
Default: $ModelName$ sldvdata

e QOptionally, enter a path that is either absolute or relative to the path name
specified in Output directory.
e Enter a file name for the MAT-file.

® $ModelName$ is a token that represents the model name.

Dependency

This parameter is enabled by Save test data to file.

Command-Line Information

Parameter: DVDataFileName
Type: string

Value: any valid path and file name
Default: '$ModelName$_sldvdata'

See Also
Simulink Design Verifier Data Files

15-47

15 simulink® Design Verifier™ Configuration Parameters

15-48

Include expected output values

Simulate the model using test case signals and include the output values in
the Simulink Design Verifier data file.

Settings
Default: Off

" On

Simulates the model using the test case signals that the analysis
produces. For each test case, the software collects the simulation output
values associated with Outport blocks in the top-level system and
includes those values in the MAT-file that it generates.

V' ofr

Does not simulate the model and collect output values for inclusion in
the MAT-file that the analysis generates.

Tips

® The TestCases.expectedOutput subfield of the MAT-file contains the
output values. For more information, see “Overview of the sldvData
Structure” on page 13-5.

® When Include expected output values is enabled, the Simulink Design
Verifier software successively simulates the model using each test case
that it generates. Enabling this option requires more time for the Simulink
Design Verifier software to complete its analysis.

Dependency

This parameter is enabled by Save test data to file.

Command-Line Information

Parameter: DVSaveExpectedOutput
Type: string

Value: 'on' | 'off'

Default: 'off'

Design Verifier Pane: Results

See Also
Simulink Design Verifier Data Files

Randomize data that does not affect outcome

Use random values instead of zeros for input signals that have no impact on
test or proof objectives.

Settings
Default: Off

I_On

Assigns random values to test case or counterexample signals that do
not affect the outcome of test or proof objectives in a model. This option
can enhance traceability and improve your regression tests.

V' ofr

Assigns zeros to test case or counterexample signals that do not affect
the outcome of test or proof objectives in a model.

Tips

® This option assigns random values to test case or counterexample signals
that otherwise would be zero. In the Simulink Design Verifier report, the
Generated Input Data table always displays a dash (-) for such signals.

e Enable this option to enhance traceability when simulating test cases or
counterexamples. For instance, consider the following model:

In1
e 4 ()
In2 — Ot
Smitch
In3

Only the signal entering the Switch block’s control port impacts its decision
coverage. If the Randomize data that does not affect outcome
parameter is off, the Simulink Design Verifier software uses zeros to

15-49

15 simulink® Design Verifier™ Configuration Parameters

represent the signals from In1 and In3. When inspecting the results from
test case or counterexample simulations, it is unclear which of these signals
passes through the Switch block because they have the same value. But if
the Randomize data that does not affect outcome parameter is on, the
software uses unique values to represent each of those signals. In this case,
it is easier to determine which signal passes through the Switch block.

Dependency

This parameter is enabled by Save test data to file.

Command-Line Information

Parameter: DVRandomizeNoEffectData
Type: string

Value: 'on' | 'off'

Default: 'off'

See Also

Simulink Design Verifier Data Files

Display results of the analysis on the model

Display analysis results by highlighting the model and providing
context-sensitive details about the results.

Settings
Default: Off
I On
Do not display analysis results on the model.

V' ofr

Highlight the model with the analysis results and provide
context-sensitive details about the results.

15-50

Design Verifier Pane: Results

Command-Line Information

Parameter: DVDisplayResultsOnModel
Type: string

Value: 'on' | 'off'

Default: 'off'

See Also
Highlighted Results on Model

15-51

15 simulink® Design Verifier™ Configuration Parameters

15-52

Save test harness as model
Create a harness model generated by the Simulink Design Verifier analysis.

Settings
Default: Off

I On
Saves the harness model that the Simulink Design Verifier software
generates as a model file.

M off

Does not save the harness model that the Simulink Design Verifier
software generates.

Dependency

This parameter enables Harness model file name.

Command-Line Information

Parameter: DVSaveHarnessModel
Type: string

Value: 'on' | 'off'

Default: 'off'

See Also
Harness Model

Design Verifier Pane: Results

Harness model file name
Specify a folder and file name for the harness model.

Settings
Default: $ModelName$ harness

e QOptionally, enter a path that is either absolute or relative to the path name
specified in Output directory.
® Enter a file name for the harness model.

® $ModelName$ is a token that represents the model name.

Dependency

This parameter is enabled by Save test harness as model.

Command-Line Information

Parameter: DVHarnessModelFileName
Type: string

Value: any valid path and file name
Default: '$ModelName$_harness'

See Also
Harness Model

15-53

15 simulink® Design Verifier™ Configuration Parameters

15-54

Reference input model in generated harness
Use a Model block to reference the model to run in the harness model.

Settings
Default: Off

K On
Uses a Model block to reference the model to run in the harness model.

W oft

Uses a copy of the model in the harness model.
Tips
e If the Test Unit in the harness model is a subsystem, the values of the

Simulink simulation optimization parameters on the Configuration
Parameters dialog box may impact your coverage results.

Note The simulation optimization parameters are on the following
Configuration Parameters dialog box panes:

= Optimization pane
= Optimization > Signals and Parameters pane

= Optimization > Stateflow pane

e If your model contains bus objects and you select Reference input
model in generated harness, in the Configuration Parameters >
Diagnostics > Connectivity pane, you must set the Mux blocks used to
create bus signals parameter to error.

¢ On the Design Verifier > Parameters pane, if you select the Apply
parameters parameter, the Simulink Design Verifier software always
uses a subsystem that contains a copy of the original model in the harness
model, even if you select Reference input model in generated harness.

Design Verifier Pane: Results

Command-Line Information

Parameter: DVModelReferenceHarness
Type: string

Value: 'on' | 'off!'

Default: 'off'

See Also
Harness Model

15-55

15 simulink® Design Verifier™ Configuration Parameters

15-56

Save test harness as SystemTest TEST-file (will
reference saved data file)

Save the analysis results as a SystemTest TEST-file so you can run test cases
using the SystemTest capabilities.

Note The option to create a SystemTest TEST-file is only available
In test-generation mode; you cannot create this file when running a
property-proving analysis.

Settings
Default: Off

I On
Saves the analysis results as a SystemTest TEST-file.
M off

Does not save the analysis results as a SystemTest TEST-file.

Dependency

This parameter enables SystemTest file name.

Command-Line Information

Parameter: DVSaveSystemTestHarness
Type: string

Value: 'on' | 'off'

Default: 'off'

See Also
SystemTest TEST-Files

Design Verifier Pane: Results

SystemTest file name
Specify a folder and file name for the SystemTest TEST-file.

Settings

Default: $ModelName$ harness

e QOptionally, enter a path that is either absolute or relative to the path name
specified in Output directory.

¢ Enter a file name for the SystemTest TEST-file.

® $ModelName$ is a token that represents the model name.

Dependency
This parameter is enabled by Save test harness as SystemTest TEST-file
(will reference saved data file).

Command-Line Information

Parameter: DVMSystemTestFileName
Type: string

Value: any valid path and file name
Default: '$ModelName$_harness'

See Also
SystemTest TEST-Files

15-57

15 simulink® Design Verifier™ Configuration Parameters

Design Verifier Pane: Report

Report

Generate report of the results
Report file name:

Include screen shots of properties

Display report

In this section...

“Report Pane Overview” on page 15-59
“Generate report of the results” on page 15-60
“Report file name” on page 15-61

“Include screen shots of properties” on page 15-62

“Display report” on page 15-63

15-58

Design Verifier Pane: Report

Report Pane Overview

Specify options that control how the Simulink Design Verifier software
reports its results.

See Also
Simulink Design Verifier Reports

15-59

15 simulink® Design Verifier™ Configuration Parameters

15-60

Generate report of the results

Generate and save a Simulink Design Verifier report.

Settings
Default: Off
I On

Saves the HTML report that the Simulink Design Verifier software
generates.

V' ofr

Does not generate a Simulink Design Verifier report.

Dependencies

When this parameter is enabled, you must enable Save test harness as
model.

This parameter enables the following parameters:

¢ Report file name
¢ Include screen shots of properties

* Display report

Command-Line Information

Parameter: DVSaveReport
Type: string

Value: 'on' | 'off'
Default: 'off"

See Also

Simulink Design Verifier Reports

Design Verifier Pane: Report

Report file name

Specify a folder and file name for the report that Simulink Design Verifier
analysis generates.

Settings
Default: $ModelName$ report

e QOptionally, enter a path that is either absolute or relative to the path name
specified in Output directory.
e Enter a file name for the report that the analysis generates.

® $ModelName$ is a token that represents the model name.

Dependency

This parameter is enabled by Generate report of the results.

Command-Line Information

Parameter: DVReportFileName
Type: string

Value: any valid path and file name
Default: '$ModelName$ report'

See Also
Simulink Design Verifier Reports

15-61

15 simulink® Design Verifier™ Configuration Parameters

15-62

Include screen shots of properties

Includes screen shots of properties in the Simulink Design Verifier report.
Only valid in property-proving mode.

Settings
Default: Off

I On
Includes screen shots of properties in the Simulink Design Verifier
report. Only valid in property-proving mode.

M off

Does not include screen shots of properties in the Simulink Design
Verifier report.

Dependency

This parameter is enabled by Generate report of the results.

Command-Line Information

Parameter: DVReportIncludeGraphics
Type: string

Value: 'on' | 'off!'

Default: 'off"

See Also
Simulink Design Verifier Reports

Design Verifier Pane: Report

Display report
Display the report that the Simulink Design Verifier analysis generates after
completing its analysis.

Settings
Default: On

¥ On
Displays the report that the analysis generates after completing its
analysis.

I off
Does not display the report that the analysis generates after completing
its analysis.

Dependency

This parameter is enabled by Generate report of the results.

Command-Line Information

Parameter: DVDisplayReport
Type: string

Value: 'on' | 'off!'
Default: 'on'
See Also

Simulink Design Verifier Reports

15-63

15 simulink® Design Verifier™ Configuration Parameters

Parameter Command-Line Information Summary

The following table lists parameters that you can use to configure the
behavior of the Simulink Design Verifier software. Use the get _param and
set_param functions to retrieve and specify values for these parameters
programmatically.

For each parameter listed in the table, the Description column indicates
where you can set its value on the Configuration Parameters dialog box.

The Values column shows the type of value required, the possible values
(separated with a vertical line), and the default value (enclosed in braces).

Parameter Description Values

DVAssertions Set by the Assertion blocks | 'EnableAll' | 'DisableAll’ |
parameter on the Design {'UselLocalSettings'}
Verifier > Property
Proving pane.

DVAutomaticStubbing Set by the Automatic {'on'} | 'off'
stubbing of unsupported
blocks and functions
parameter on the Design
Verifier pane.

DVBlockReplacement Set by the Apply block ‘on' | {'off'}
replacements parameter
on the Design Verifier >
Block Replacements pane.

DVBlockReplacement- Set by the File path of the | string

ModelFileName output model parameter {'$ModelName$ replacement'}
on the Design Verifier >
Block Replacements pane.

DVBlockReplacement - Set by the List of string

RuleslList block replacement {'<FactoryDefaultRules>"'}

rules parameter on the
Design Verifier > Block
Replacements pane.

15-64

Parameter Command-Line Information Summary

Parameter

Description

Values

DVCoverageDataFile

Set by the Coverage data
file parameter on the Design
Verifier > Test Generation
pane.

string {''}

DVCovFilter

Set by the Ignore objectives
based on filter parameter
on the Design Verifier >
Test Generation pane.

‘on' | {'off'}

DVCovFilterFileName

Set by the Coverage filter
file parameter on the Design
Verifier > Test Generation
pane.

string {''}

DVDataFileName

Set by the Data file name
parameter on the Design
Verifier > Results pane.

string
{'$ModelName$_sldvdata'}

DVDesignMinMax -
Constraints

Set by the Use specified
input minimum and
maximum values
parameter on the Design
Verifier pane.

{'on'} | 'off'

DVDetectIntegerOverflow

Set by the Integer overflow
parameter on the Design
Verifier > Design Error
Detection pane.

{'on'} | 'off'

DVDetectDivisionByZero

Set by the Division by zero
parameter on the Design
Verifier > Design Error
Detection pane.

{'on'} | 'off'

DVDisplayReport

Set by the Display report
parameter on the Design
Verifier > Report pane.

{'on'} | 'off'

15-65

15 simulink® Design Verifier™ Configuration Parameters

Parameter

Description

Values

DVDisplayResultsOnModel

Set by the Display results
of the analysis on the
model parameter on the
Design Verifier > Results
pane.

‘on' | {'off'}

DVDisplayUnsatisfiable-
Objectives

Set by the Display
unsatisfiable test
objectives parameter on the
Design Verifier pane.

‘on' | {'off'}

DVExtendExistingTests

Set by the Extend existing
test cases parameter on
the Design Verifier > Test
Generation pane.

‘on' | {'off'}

DVExistingTestFile Set by the Data file string {''}
parameter on the Design
Verifier > Test Generation
pane.

DVHarnessModelFileName Set by the Harness model | string

file name parameter on the
Design Verifier > Results
pane.

{'$ModelName$ harness'}

DVIgnoreCovSatisfied

Set by the Ignore objectives
satisfied in existing
coverage data parameter
on the Design Verifier >
Test Generation pane.

‘on' | {'off'}

DVIgnoreExistTest-
Satisfied

Set by the Ignore objectives
satisfied by existing test
cases parameter on the
Design Verifier > Test
Generation pane.

{on'}| 'off'

DVMakeOQutputFilesUnique

Set by the Make output file
names unique by adding
a suffix check box on the
Design Verifier pane.

{'on'} | 'off'

Parameter Command-Line Information Summary

Parameter Description Values

DVMaxProcessTime Set by the Maximum double {'300'}
analysis time parameter on
the Design Verifier pane.

DVMaxTestCaseSteps Set by the Maximum test int32 {'500"'}
case steps parameter on
the Design Verifier > Test
Generation pane.

DVMaxViolationSteps Set by the Maximum int32 {'20'}
violation steps parameter
on the Design Verifier >
Property Proving pane.

DVMode Set by the Mode parameter | {'TestGeneration'} |
on the Design Verifier '"ErrorDetection' |
pane. '"PropertyProving'
DVModelCoverage- Set by the Model coverage | 'None' | 'Decision' |
Objectives objectives parameter on {'ConditionDecision'} |

the Design Verifier > Test | 'MCDC'
Generation pane.

DVModelReferenceHarness Set by the Reference ‘on' | {'off")
input model in generated
harness parameter on the
Design Verifier > Results
pane of the Configuration
Parameters dialog box.

DVOutputDir Set by the Output directory | string
parameter on the Design {'sldv_output/$ModelName$'}
Verifier pane.

DVParameters Set by the Apply ‘on' | {off'}
parameters parameter
on the Design Verifier >
Parameters pane.

15-67

15 simulink® Design Verifier™ Configuration Parameters

Parameter

Description

Values

DVParametersConfigFile-

Set by the Parameter

string

Name configuration file {'sldv_params_template.m'}
parameter on the Design
Verifier > Parameters
pane.
DVProofAssumptions Set by the Proof 'EnableAll' | 'DisableAll’ |
assumptions parameter {'UselLocalSettings'}
on the Design Verifier >
Property Proving pane.
DVProvingStrategy Set by the Strategy ‘FindViolation'
parameter on the Design | {'Prove'} |

Verifier > Property
Proving pane.

'"ProveWithViolationDetection'

DVRandomizeNoEffectData

Set by the Randomize
data that does not affect
outcome parameter on the
Design Verifier > Results
pane.

‘on' | {'off'}

DVReportFileName

Set by the Report file name
parameter on the Design
Verifier > Report pane.

string {'$ModelName$ report'}

DVReportIncludeGraphics

Set by the Include screen
shots of properties
parameter on the Design
Verifier > Report pane.

‘on' | {'off'}

DVSaveDataFile

Set by the Save test data
to file parameter on the
Design Verifier > Results
pane.

{'on'} | 'off'

DVSaveExpectedOutput

Set by the Include expected
output values parameter
on the Design Verifier >
Results pane.

‘on' | {'off'}

15-68

Parameter Command-Line Information Summary

Parameter

Description

Values

DVSaveHarnessModel

Set by the Save test harness
as model parameter on the
Design Verifier > Results
pane.

‘on' | {off'}

DVSaveReport

Set by the Generate report
of the results parameter
on the Design Verifier >
Report pane.

‘on' | {off'}

DVSaveSystemTestHarness

Set by the Save text
harness as SystemTest
TEST-file (will reference
saved data file) parameter
on the Design Verifier >
Results pane.

‘on' | {off'}

DVSystemTestFileName

Set by the SystemTest file
name parameter on the
Design Verifier > Results
pane.

string
{'$ModelName$ harness'}

DVTestConditions

Set by the Test conditions
parameter on the Design
Verifier > Test Generation
pane.

'EnableAll' | 'DisableAll’ |
{'UseLocalSettings'}

DVTestObjectives

Set by the Test objectives
parameter on the Design
Verifier > Test Generation
pane.

'EnableAll' | 'DisableAll’ |
{'UselLocalSettings'}

DVTestSuiteOptimization

Set by the Test suite
optimization parameter on
the Design Verifier > Test
Generation pane.

{'CombinedObjectives'} |
‘IndividualObjectives’

| 'LargeModel' |
'LongTestCases' |
‘CombinedObjectives
(Nonlinear Extended)'
‘LargeModel (Nonlinear
Extended)'

15-69

15 simulink® Design Verifier™ Configuration Parameters

15-70

Simulink Block Support

® “Overview of Simulink Block Support” on page 16-2
e “Additional Math and Discrete Library” on page 16-3
¢ “Commonly Used Blocks Library” on page 16-4

¢ “Continuous Library” on page 16-5

¢ “Discontinuities Library” on page 16-6

¢ “Discrete Library” on page 16-7

® “Logic and Bit Operations Library” on page 16-8

¢ “Lookup Tables Library” on page 16-9

® “Math Operations Library” on page 16-10

e “Model Verification Library” on page 16-12

* “Model-Wide Utilities Library” on page 16-13

® “Ports & Subsystems Library” on page 16-14

e “Signal Attributes Library” on page 16-16

e “Signal Routing Library” on page 16-17

e “Sinks Library” on page 16-18

® “Sources Library” on page 16-19

e “User-Defined Functions Library” on page 16-20

16 Simulink® Block Support

Overview of Simulink Block Support

The following tables summarize Simulink Design Verifier software’s support
for Simulink blocks. Each table lists all the blocks in that Simulink library
and describes support information for that particular block. A dash (—)
indicates that the software supports that block under all conditions.

If the software does not support a given block, you can turn on automatic
stubbing, which considers the interface of the unsupported blocks, but
not their behavior. However, if any of the unsupported blocks affect the
simulation outcome, the analysis may achieve only partial results.

For details about automatic stubbing, see “Handling Incompatibilities with
Automatic Stubbing” on page 2-10.

16-2

Additional Math and Discrete Library

Additional Math and Discrete Library

The Simulink Design Verifier software supports all blocks in the Additional
Math and Discrete library.

16-3

16 Simulink® Block Support

Commonly Used Blocks Library

The Commonly Used Blocks library includes blocks from other libraries.
Those blocks are listed under their respective libraries.

16-4

Continuous Library

Continuous Library

Block

Support Notes

Derivative

Not supported

Integrator

Not supported

Integrator Limited

Not supported

PID Controller

Not supported

PID Controller (2 DOF)

Not supported

Second Order Integrator/Second Order Integrator
Limited

Not supported

State-Space

Not supported

Transfer Fen

Not supported

Transport Delay

Not supported

Variable Time Delay

Not supported

Variable Transport Delay

Not supported

Zero-Pole

Not supported

16-5

16 Simulink® Block Support

Discontinuities Library

The Simulink Design Verifier software supports all blocks in the
Discontinuities library.

16-6

Discrete Library

Discrete Library

Block

Support Notes

Difference

Discrete Derivative

Discrete Filter

Discrete FIR Filter

Discrete PID Controller

Discrete PID Controller (2 DOF)

Discrete State-Space

Not supported

Discrete Transfer Fen

Discrete Zero-Pole

Not supported

Discrete-Time Integrator

First-Order Hold

Integer Delay

Memory

Tapped Delay

Transfer Fen First Order

Transfer Fen Lead or Lag

Transfer Fen Real Zero

Unit Delay

Zero-Order Hold

16-7

16 Simulink® Block Support

Logic and Bit Operations Library

The Simulink Design Verifier software supports all blocks in the Logic and
Bit Operations library.

16-8

Lookup Tables Library

Lookup Tables Library

Block

Support Notes

Cosine

Direct Lookup Table (n-D)

Interpolation Using Prelookup

Not supported when:

¢ The Interpolation method parameter is Linear and
the Number of table dimensions parameter is greater
than 4.

or
® The Interpolation method parameter is Linear and

the Number of sub-table selection dimensions
parameter is not 0.

1-D Lookup Table

Not supported when the Interpolation method or the
Extrapolation method parameter is Cubic Spline.

2-D Lookup Table

Not supported when the Interpolation method or the
Extrapolation method parameter is Cubic Spline.

n-D Lookup Table

Not supported when:

¢ The Interpolation method or the Extrapolation
method parameter is Cubic Spline.

or
¢ The Interpolation method parameter is Linear and

the Number of table dimensions parameter is greater
than 5.

Lookup Table Dynamic

Prelookup

Sine

16-9

16 Simulink® Block Support

Math Operations Library

Block

Support Notes

Abs

Add

Algebraic Constraint

Assignment

Bias

Complex to Magnitude-Angle

Not supported

Complex to Real-Imag

Not supported

Divide

Dot Product

Find Nonzero Elements

Gain

Magnitude-Angle to Complex

Not supported

Math Function

All signal types support the following Function
parameter settings.

conj

hermitian | magnitude~2

mod

rem

reciprocal| square

transpose

The Simulink Design Verifier software does not support
the following Function parameter settings.

10%u

exp

hypot

log

log10

pow

Matrix Concatenate

MinMax

MinMax Running Resettable

Permute Dimensions

16-10

Math Operations Library

Block

Support Notes

Polynomial

Product

Product of Elements

Real-Imag to Complex

Not supported

Reciprocal Sqrt

Not supported

Reshape

Rounding Function

Sign

Signed Sqrt

Not supported

Sine Wave Function

Not supported

Slider Gain

Sqrt

Not supported

Squeeze

Subtract

Sum

Sum of Elements

Trigonometric Function

Supported when Function is sin, cos, or sincos and
Approximation method is CORDIC.

Unary Minus

Vector Concatenate

Weighted Sample Time Math

16-11

16 Simulink® Block Support

Model Verification Library

The Simulink Design Verifier software supports all blocks in the Model
Verification library.

16-12

Model-Wide Utilities Library

Model-Wide Utilities Library

Block Support Notes
Block Support Table =

DocBlock =

Model Info —

Timed-Based Linearization Not supported
Trigger-Based Linearization Not supported

16-13

16 Simulink® Block Support

Ports & Subsystems Library

Block

Support Notes

Atomic Subsystem

Code Reuse Subsystem

Configurable Subsystem

Enable

Enabled Subsystem

Enabled and Triggered Subsystem

Not supported when the trigger control signal specifies a
fixed-point data type.

For Each

Not supported

For Each Subsystem

Not supported

For Iterator Subsystem

Function-Call Feedback Latch

Function-Call Generator

Function-Call Split

Function-Call Subsystem

If

Parameter configurations are not supported for the If
and Fen blocks. The Simulink Design Verifier software
ignores any parameter configurations that you specify
for these blocks.

If Action Subsystem

Inport

Model

Supported except for the limitations described in
“Limitations of Support for Model Blocks” on page 3-12.

Model Variants

Supported except for the limitations described in
“Limitations of Support for Model Blocks” on page 3-12.

Outport

Subsystem

Switch Case

16-14

Ports & Subsystems Library

Block

Support Notes

Switch Case Action Subsystem

Trigger

Triggered Subsystem

Not supported when the trigger control signal specifies a
fixed-point data type.

Variant Subsystem

While Iterator Subsystem

16-15

16 Simulink® Block Support

Signal Attributes Library

The Simulink Design Verifier software supports all blocks in the Signal
Attributes library.

16-16

Signal Routing Library

Signal Routing Library

Block

Support Notes

Bus Assignment

Bus Creator

Bus Selector

Data Store Memory

Data Store Read

Data Store Write

Demux

Environment Controller

From

Goto

Goto Tag Visibility

Index Vector

Manual Switch

The Manual Switch block is compatible with the
Simulink Design Verifier software, but the analysis
ignores this block in a model. The analysis does not
flag the coverage objectives for this block as satisfiable
or unsatisfiable.

Model coverage data is collected for the Manual Switch
block.

Merge

Multiport Switch

Mux

Selector

Switch

Vector Concatenate

16-17

16 Simulink® Block Support

Sinks Library

Block

Support Notes

Display

Floating Scope

Outport (Outl)

Scope

Stop Simulation

Not supported

Terminator

To File

To Workspace

XY Graph

16-18

Sources Library

Sources Library

Block Support Notes

Band-Limited White Noise

Not supported

Chirp Signal

Not supported

Clock

Constant

Supported unless Constant value is inf.

Counter Free-Running

Counter Limited

Digital Clock

Enumerated Constant

From File

Not supported

From Workspace

Not supported

Ground

Inport (In1)

Pulse Generator

Ramp

Random Number

Not supported

Repeating Sequence

Not supported

Repeating Sequence Interpolated

Not supported

Repeating Sequence Stair

Signal Builder

Not supported

Signal Generator

Not supported

Sine Wave

Not supported

Step

Uniform Random Number

Not supported

16-19

16

Simulink® Block Support

User-Defined Functions Library

Block

Support Notes

Fen

Supports all operators except *, and supports only the
mathematical functions abs, ceil, fabs, floor, rem,
and sgn.

Parameter configurations are not supported for the If
and Fen blocks. The Simulink Design Verifier software
ignores any parameter configurations that you specify
for these blocks.

Interpreted MATLAB Function

Not supported

MATLAB Function

For limitations, see “Support Limitations for MATLAB
for Code Generation” on page 3-16 for more information.

Level-2 MATLAB S-Function

Not supported

S-Function

Not supported

S-Function Builder

Not supported

16-20

Support for Code
(Generation from MATLAB

17 Support for Code Generation from MATLAB®

The following table lists only the code generation from MATLAB library
functions for which the Simulink Design Verifier software provides no support
or limited support. See “Functions Supported for Code Generation” for the
complete listing of available functions.

Function Support Notes

Arithmetic Operator Functions

mldivide (\) Supports only scalar arguments.
mpower (") Supports only integer exponents.
mrdivide (/) Supports only scalar arguments.
power (.") Supports only integer exponents.

Casting Functions

char Not supported.
typecast Not supported.
Complex Number Functions
complex Not supported.
imag Not supported.
Error-Handling Functions
assert Supported, but does not behave like a Proof Objective
block.
Exponential Functions
exp Not supported.
expm Not supported.
expm1i Not supported.
log Not supported.
log2 Not supported.
logi0 Not supported.
logip Not supported.
nextpow?2 Not supported.

17-2

../../../techdoc/ref/arithmeticoperators.html

Function Support Notes
nthroot Not supported.
reallog Not supported.
realpow Not supported.
realsqrt Not supported.
sqrt Not supported.

Filtering and Convolution Functions

detrend

‘ Not supported.

Fixed-Point Toolbox™ Functions

complex

’ Not supported.

Interpolation and Computational Geometry

cart2pol Not supported.
cart2sph Not supported.
pol2cart Not supported.
sph2cart Not supported.

Matrix and Array Functions

angle Not supported.
cond Not supported.
det Not supported.
eig Not supported.
inv Not supported.
invhilb Not supported.
logspace Not supported.
lu Not supported.
norm Supported only when invoked using the syntax

norm(A,p)

where p is either 1 or inf.

17-3

17 Support for Code Generation from MATLAB®

17-4

Function

Support Notes

normest

Not supported.

pinv

Not supported.

planerot

Not supported.

qr

Not supported.

rank

Not supported.

rcond

Not supported.

subspace

Not supported.

Polynomial Functi

ons

poly

Not supported.

polyfit

Not supported.

Signal Processing Functions

chol

Not supported.

fft

Not supported.

fftshift

Not supported.

ifft

Not supported.

ifftshift

Not supported.

sosfilt

Not supported.

svd

Not supported.

Special Values

rand

Not supported.

randn

Not supported.

Specialized Math

beta

Not supported.

betainc

Not supported.

betaln

Not supported.

ellipke

Not supported.

Function

Support Notes

erf

Not supported.

erfc

Not supported.

erfcinv

Not supported.

erfcx

Not supported.

erfinv

Not supported.

expint

Not supported.

gamma

Not supported.

gammainc

Not supported.

gammaln

Not supported.

Statistical Functio

ns

std

Not supported.

String Functions

char

Not supported.

ischar

Not supported.

Trigonometric Functions

acos

Not supported.

acosd

Not supported.

acosh

Not supported.

acot

Not supported.

acotd

Not supported.

acoth

Not supported.

acsc

Not supported.

acscd

Not supported.

acsch

Not supported.

asec

Not supported.

asecd

Not supported.

17-5

17 Support for Code Generation from MATLAB®

Function Support Notes
asech Not supported.
asin Not supported.
asinh Not supported.
atan Not supported.
atan2 Not supported.
atand Not supported.
atanh Not supported.
cos Not supported.
cosd Not supported.
cosh Not supported.
cot Not supported.
cotd Not supported.
coth Not supported.
csc Not supported.
cscd Not supported.
csch Not supported.
hypot Not supported.
sec Not supported.
secd Not supported.
sech Not supported.
sin Not supported.
sind Not supported.
sinh Not supported.
tan Not supported.
tand Not supported.
tanh Not supported.

17-6

Glossary

abstraction
The process of ignoring certain aspects of model behavior that do not
affect the test objective or property under investigation.

analysis model
The target model for a Simulink Design Verifier analysis. If you select
an atomic subsystem for analysis, the analysis model is generated by
extracting the subsystem to a new model.

assumption
A property that is assumed to be true during a property proof. The proof
result holds only when the assumption is true.

block replacement rule
A rule that is registered with the Simulink Design Verifier software and
defines how instances of specific blocks are replaced by an alternate
implementation. The software uses MATLAB commands to define when
and how to apply a block replacement rule (see Chapter 4, “Working
with Block Replacements”).

component verification
The process of verifying an individual components in a model. You
can verify a component within the execution context of the model, or
independently of its parent model.

condition coverage
Measures the percentage of the total number of logic conditions
associated with logical model objects that the simulation actually
exercised. Enabling condition coverage causes every decision and
condition coverage outcome to be enabled. See “Types of Model
Coverage” in the Simulink Verification and Validation User’s Guide.

constraint
A property that is forced to be true during test case generation.

counterexample
A test case that demonstrates a property violation.

Glossary-1

Glossary

Glossary-2

coverage objective
A test objective that defines when a coverage point results in a
particular outcome.

coverage point
A decision, condition, or MCDC expression associated with a model
object. Each coverage point has a fixed number of mutually exclusive
outcomes.

decision coverage
Measures the percentage of the total number of simulation paths
through model objects that the simulation actually traversed. Decision
coverage 1s a subset of modified decision/condition coverage. See “T'ypes

of Model Coverage” in the Simulink Verification and Validation User’s
Guide.

floating-point approximation
The process of approximating floating-point numbers using rational
numbers (i.e., fractions whose numerator and denominator are small
integers). The Simulink Design Verifier software performs floating-point
approximations during its analysis. It can generate invalid test cases
that result from numerical differences. For example, given a sufficiently
large floating-point number x, the expression x==(x+1) is true; however,
this expression never holds if x is a rational number.

invalid test case
A test case that does not satisfy its objectives.

modified condition/decision coverage (MCDC)
Measures the independence of logical block inputs and transition
conditions associated with logical model objects during the simulation.
When you set the coverage objective to MCDC, Simulink Design Verifier
automatically enables every coverage objective for decision coverage and
condition coverage as well.

Note that MCDC test cases are not generated for XOR configured logic
operators. You can achieve MCDC by using the same tests that would
be generated from AND configured blocks or OR configured blocks.

See “Types of Model Coverage” in the Simulink Verification and
Validation User’s Guide.

Glossary

nonlinear arithmetic
A computation in the model that cannot be expressed as a combination
of mutually exclusive linear expressions. Nonlinear arithmetic can
affect a property or test objective, and it can cause the analysis to return
an error. In this case, you should apply simplifying approximations
and abstractions.

property
A logical expression of the signals and data values, within a model, that
1s intended to be proven true during simulation. Properties evaluate at
specific points in the model.

property violation
The condition during a simulation when a property is false.

test case
A sequence of numeric values and input data time that you input to a
model during its simulation.

test harness
A model that runs test cases on an analysis model.

test objective
A logical expression of the signals and data values, within a model, that
is intended to be true at least once in the resulting test case during
simulation. Test objectives evaluate at specific points in the model.

Test Objective block
The block that you add to a model to define test objectives. In the block
mask, define test objectives as values or ranges that an input signal
must satisfy during a test case.

unsatisfiable test objective
The status of a test objective that indicates a test case cannot be
generated for the specified approximations. This includes floating-point
approximations and maximum-step limitations specified in the Design
Verifier > Test Generation pane of the Configuration Parameters
dialog box.

Glossary-3

Glossary

validated property
The status of a property that indicates no counterexample exists,
subject to floating-point approximations and the settings specified in the
Property Proving pane of the Configuration Parameters dialog box.

Glossary-4

Examples

Use this list to find examples in the documentation.

A Examples

Generating Test Cases

“Analyzing a Model” on page 1-7

“Analyzing a Subsystem” on page 1-30

“Analyzing a Stateflow Atomic Subchart” on page 1-32

“Constructing the Example Model” on page 7-5

“Checking Compatibility of the Example Model” on page 7-7

“Configuring Test Generation Options” on page 7-8

“Analyzing the Example Model” on page 7-9

“Customizing Test Generation” on page 7-18

“Reanalyzing the Example Model” on page 7-21

“Example: Extending Existing Test Cases for a Model that Uses Temporal
Logic” on page 8-4

“Example: Extending Existing Test Cases for a Closed-Loop System” on
page 8-11

“Example: Extending Existing Test Cases for a Modified Model” on page
8-14

“Example: Achieving Missing Coverage in a Referenced Model” on page 9-3
“Example: Achieving Missing Coverage in a Closed-Loop Simulation
Model” on page 9-8

Automatic Stubbing

“Analyzing a Model Using Automatic Stubbing” on page 2-13

Working with Block Replacements

“Example: Replacing Multiport Switch Blocks” on page 4-9
“Configuring Block Replacements” on page 4-17

Specifying Parameter Configurations

“Constructing the Example Model” on page 5-9

Component Verification

“Parameterizing the Constant Block” on page 5-10
“Specifying a Parameter Configuration” on page 5-11
“Analyzing the Example Model” on page 5-12
“Simulating the Test Cases” on page 5-15

Component Verification

“Example: Verifying a Component for Code Generation” on page 10-6

Considering Specified Minimum and Maximum Inputs

“Example: Output Minimum and Maximum Values on Inport Blocks” on
page 11-4

“Example: Minimum and Maximum Values in Simulink.Signal Objects”
on page 11-8

“Example: Minimum and Maximum Values on Stateflow Data Objects” on
page 11-10

“Example: Minimum and Maximum Values in Subsystems” on page 11-13
“Example: Minimum and Maximum Values in Global Data Storage” on
page 11-16

Proving Properties of a Model

“Constructing the Example Model” on page 12-6

“Instrumenting the Example Model” on page 12-9

“Configuring Property-Proving Options” on page 12-10

“Analyzing the Example Model” on page 12-11

“Customizing the Example Proof” on page 12-21

“Reanalyzing the Example Model” on page 12-22

“Using a Verification Model to Prove System-Level Properties” on page
12-28

“Property-Proving Examples” on page 12-33

A-3

A Examples

A

Additional Math and Discrete Library
Simulink Design Verifier support for blocks
in 16-3
AnalysisInformation field 13-7
analyzing
Model blocks
Simulink Design Verifier analysis 2-6
analyzing large models
bottom-up approach to 14-16
characteristics that cause problems
with 14-2
generating reports 14-9
generating tests incrementally 14-14
initial steps 14-4
mathematical techniques for 2-9
optimization strategy for 14-6
partitioning model inputs 14-14
property-proving techniques 14-27
simplifying 14-10
types of problems 14-3
analyzing models
overview 2-2
simple example 2-3
with counters and timers 14-25
with large state spaces 14-24
approximations
converting floating-point arithmetic 2-19
during model analysis 2-18
ensuring validity of analysis when using 2-20
linearizing two-dimensional lookup
tables 2-19
types 2-18
unrolling while loops 2-20
atomic subcharts
analyzing 1-32
automatic stubbing
achieving complete results after 2-17
definition 2-10
enabling 2-15

enabling after compatibility check 3-6
function-call triggers and 2-12
reviewing results after 2-16

S-Function blocks and 2-12
Trigonometric Function blocks and 2-10
workflow 2-13

block replacements
configuration 4-17
example 4-8
execution 4-18
factory defaults 4-4
for unsupported blocks after automatic
stubbing 2-17
introduction 4-2
template 4-7
block support
limitations 3-11
summary 16-1
blocks
Model
Simulink Design Verifier analysis 2-6

C

closed-loop controllers
achieving missing coverage for 9-8
extending existing test cases for 8-11
code generation from MATLAB
support for 17-2
combining
test cases 1-29
Commonly Used Blocks Library
Simulink Design Verifier support for blocks
in 16-4
component verification
approaches 10-2
example 10-6

Index-1

Index

functions for 10-4
tools for 10-2
components
verifying. See component verification
configuration parameters
Block Replacements pane 15-14
Apply block replacements 15-15
File path of the output model 15-17
List of block replacement rules 15-16
Design Error Detection pane 15-35
Division by zero 15-35
Integer overflow 15-35
Design Verifier pane 15-4
Automatic stubbing of unsupported
blocks and functions 15-8
Display unsatisfiable test objectives 15-7
Make output file names unique by adding
a suffix 15-12
Maximum analysis time 15-6
Mode 15-4
Output directory 15-10
Use specified input minimum and
maximum values 15-9
Parameters pane 15-19
Apply parameters 15-19
Parameter configuration file 15-19
Property Proving pane 15-38
Assertion blocks 15-39
Maximum violation steps 15-42
Proof assumptions 15-40
Strategy 15-41
Report pane 15-59
Display report 15-63
Generate report of the results 15-60
Include screen shots of properties 15-62
Report file name 15-61
Results pane 15-45
Data file name 15-47
Display results of the analysis on the
model 15-50

Index-2

Harness model file name 15-53
Include expected output values 15-48
Randomize data that does not affect
outcome 15-49
Reference input model in generated
harness 15-54
Save test data to file 15-46
Save test harness as model 15-52
Save test harness as SystemTest
TEST-file (will reference saved data
file) 15-56
SystemTest file name: 15-57
summary 15-64
Test Generation pane 15-23
Coverage data file 15-32
Data file 15-30
Extend existing test cases 15-29
Ignore objectives satisfied by existing
test cases 15-31
Ignore objectives satisfied in existing
coverage data 15-31
Maximum test case steps 15-27
Model coverage objectives 15-24
Test conditions 15-25
Test objectives 15-26
Test suite optimization 15-28
Constraints field 13-8
Continuous Library
Simulink Design Verifier support for blocks
in 16-5
CounterExamples field 13-9
counters
analyzing models with 14-25

D

data stores
analyzing subsystems that read from 14-18
specified input minimum and maximum
values in 11-16

Index

design error detection
example 6-4
introduction 6-2
workflow 6-3
design error detection objectives
Simulink Design Verifier reports 13-34
Discontinuities Library
Simulink Design Verifier support for blocks
in 16-6
Discrete Library
Simulink Design Verifier support for blocks
in 16-7
discretization
constraining data 14-10

extending test cases
common workflow 8-3
for closed-loop systems 8-11
for models with temporal logic 8-4
for modified models 8-14
when to use 8-2

F

floating-point data
constraining for model analysis 14-10
converting to rational 2-19
function-call subsystems
analyzing 14-20

G

generating test cases 1-9
incrementally 14-14

H

harness model
configuration 13-19

contents 1-23
simulating 13-20
harness models
contents 13-14
highlighted results on model 13-2

incompatibilities
automatic stubbing and 2-10
input ports
Simulink Design Verifier support for 11-2
enabling 11-2
in subsystems 11-13
limitations 11-3
on Simulink.Signal objects 11-8
on Stateflow data objects 11-10
parameters 11-4

L

large models
analyzing, initial steps 14-4
bottom-up approach to analyzing 14-16
complexity of 14-2
generating analysis reports for 14-9
mathematical techniques for analyzing 2-9
optimization strategy 14-6
simplifying analysis of 14-10
techniques for proving properties of 14-27
type of problems analyzing 14-3
linearizing
two-dimensional lookup tables 2-19
log files 13-48
Logic and Bit Operations Library
Simulink Design Verifier support for blocks
in 16-8
logic blocks
short-circuiting 2-21
logical operations

Index-3

Index

analyzing 14-23
Logical Operator blocks
short-circuiting 2-21
Lookup Table Library
Simulink Design Verifier support for blocks
in 16-9
lookup tables
linearizing 2-19

M

Math Operations Library
Simulink Design Verifier support for blocks
in 16-10
MATLAB for code generation
features Simulink Design Verifier does not
support 3-16
MATLAB functions
for property proofs 12-3
for test cases 7-2
limitations for Simulink Design Verifier
analysis 3-16
minimum and maximum values
Simulink Design Verifier support for 11-2
enabling 11-2
in subsystems 11-13
limitations 11-3
on Simulink.Signal objects 11-8
on Stateflow data objects 11-10
parameters 11-4
model compatibility
checking 2-14 3-2
enabling automatic stubbing after 3-6
model coverage
using Simulink Design Verifier analysis to
achieve missing 9-2
Model Verification Library
Simulink Design Verifier support for blocks
in 16-12
Model-Wide Utilities Library

Index-4

Simulink Design Verifier support for blocks
in 16-13
ModelInformation field 13-6
ModelObjects field 13-8
models 14-2
analyzing, overview 2-2
complexity of 14-2
mathematical techniques for simplifying
analysis 2-9
See also large models

o

Objectives field 13-9

P

parameter configurations
example 5-8
introduction 5-2
syntax 5-3
Ports & Subsystems Library
Simulink Design Verifier support for blocks
in 16-14
proof objectives
Simulink Design Verifier reports 13-37
property proofs
blocks 12-2
example 12-5
introduction 12-2
MATLAB functions 12-3
Stateflow actions 12-2
subsystems 12-32
techniques for large models 14-27
workflow 12-4

rational data
converting floating-point data to 2-19
referenced models

Index

achieving missing coverage for 9-3

S

S-Function blocks
automatic stubbing of 2-12
short-circuiting
logic blocks 2-21
Signal Attributes Library
Simulink Design Verifier support for blocks
in 16-16
Signal Routing Library
Simulink Design Verifier support for blocks
in 16-17
Simulink Design Verifier data files
fields 13-6
overview 13-5
simulation 13-11
Simulink Design Verifier reports
analysis information 13-26
approximations 13-31
block replacements summary 13-29
Constraints 13-29
design error detection objectives 13-34
design errors 13-40
model items 13-39
proof objectives 13-37
properties 13-46
signal bounds 13-32
summary 13-26
table of contents 13-26
test cases 13-41
test objectives 13-34
test/proof objectives 13-33
title 13-26
Unsupported Blocks 13-28
Simulink Design Verifier Results window
clicking objects on highlighted model
displays 13-3
Simulink® Design Verifier™ software

analyzing demo model 1-7
block library 1-5
model parameters 15-2 15-64
starting 1-5
workflow 1-35
Sinks Library
Simulink Design Verifier support for blocks
in 16-18
sldvData structure
fields for minimum and maximum
inputs 11-6
Sources Library
Simulink Design Verifier support for blocks
in 16-19
specified input minimum and maximum values
in data stores 11-16
Simulink Design Verifier support for 11-2
enabling 11-2
in subsystems 11-13
limitations 11-3
on Simulink.Signal objects 11-8
on Stateflow data objects 11-10
parameters 11-4
sldvData fields for 11-6
state spaces
analyzing models with large 14-24
stubbing. See automatic stubbing
subsystems
achieving missing coverage for 9-8
analyzing 1-30
extracting, for analysis 14-17
function-call, analyzing 14-20
generating test cases for 7-23
proving properties of 12-32
that read from data stores, analyzing 14-18
system requirements 1-4
SystemTest TEST-files
creating 13-22

Index-5

Index

T

temporal logic
extending test cases for models with 8-4 8-11
test case generation
blocks 7-2
example 7-5
introduction 7-2
MATLAB functions 7-2
subsystems 7-23
test objectives 2-4
workflow 7-4
test cases
combining 1-29
extending existing
common workflow 8-3
for closed-loop system 8-11
for models with temporal logic 8-4
for modified models 8-14
when to use 8-2
for missing model coverage 9-2
generating 1-9
generating, incrementally 14-14
test objectives
generating test cases 2-4
Simulink Design Verifier reports 13-34
test suite optimization
large model option 14-6
TestCases field 13-9
timers

Index-6

analyzing models with 14-25
Trigonometric Function block
Simulink Design Verifier does not
support 2-13
Trigonometric Function blocks
automatic stubbing of 2-10
two-dimensional lookup tables
linearizing 2-19

V)

unrolling
while loops 2-20
unsupported features
MATLAB for code generation 3-16
Simulink 3-9
Stateflow 3-14
User-Defined Functions Library
Simulink Design Verifier support for blocks
in 16-20

\"4
Version field 13-11

w

while loops
unrolling 2-20

	toc
	Acknowledgment
	Getting Started
	Product Overview
	Key Features
	Before You Begin
	What You Need to Know
	Required Products

	Starting the Simulink Design Verifier Software
	Analyzing a Model
	About This Demo
	Opening the Model
	Generating Test Cases
	Running the Analysis
	Generating Analysis Results
	Highlighting Analysis Results on Model
	Generating a Detailed Analysis Report
	Creating a Harness Model
	Simulating Tests and Producing a Model Coverage Report

	Combining Test Cases

	Analyzing a Subsystem
	Analyzing a Stateflow Atomic Subchart
	Example: Analyzing an Atomic Subchart Using the Simulink Design

	Basic Workflow for Using the Simulink Design Verifier Software
	Learning More
	Next Step
	Product Help
	MathWorks Online

	How the Simulink Design Verifier Software Works
	Analyzing a Model with Simulink Design Verifier Software
	Analyzing a Simple Model
	Analyzing Model Blocks
	Block Reduction
	Analyzing Large Models
	Handling Incompatibilities with Automatic Stubbing
	What Is Automatic Stubbing?
	How Automatic Stubbing Works
	Stubbing Example: Trigonometric Function Block
	Stubbing Example: S-Function Blocks and Function-Call Triggers

	Analyzing a Model Using Automatic Stubbing
	Checking Model Compatibility
	Turning On Automatic Stubbing
	Reviewing the Results
	Achieving Complete Results

	Approximations
	Approximations During Model Analysis
	Types of Approximations
	Converting Floating-Point Arithmetic to Rational-Number Arithmet
	Linearizing Two-Dimensional Lookup Tables
	Unrolling While Loops
	Ensuring the Validity of the Analysis

	Short-Circuiting Logic Blocks

	Ensuring Compatibility with the Simulink Design Verifier Softwar
	Checking Model Compatibility
	Model Is Compatible
	Model Is Incompatible
	Model is Partially Compatible

	Unsupported Simulink Software Features
	Simulink Software Features Not Supported
	Simulink Block Support Limitations
	Limitations of Support for Model Blocks

	Unsupported Stateflow Software Features
	Support Limitations for MATLAB for Code Generation
	Unsupported MATLAB for Code Generation Features
	Limitations of MATLAB for Code Generation Library Function Suppo

	Fixed-Point Support Limitations

	Working with Block Replacements
	About Block Replacements
	Built-In Block Replacements
	Template for Block Replacement Rules
	Defining Custom Block Replacements
	Basic Workflow for Defining Custom Block Replacements
	Specifying Replacement Blocks
	Writing Block Replacement Rules
	Example: Replacing Multiport Switch Blocks
	Why Replace Multiport Switch Blocks?
	Creating the Library and Replacement Block
	Writing the Rule for the Replacement Block

	Executing Block Replacements
	Configuring Block Replacements
	Replacing Blocks in a Model
	Replacing Blocks and Analyzing the Model with the Block Replacem
	Performing the Block Replacements Only

	Specifying Parameter Configurations
	About Parameter Configurations
	Defining Parameter Configurations
	Template for Defining Parameters
	Syntax for Defining Parameters

	Parameter Configuration Example
	About This Example
	Constructing the Example Model
	Parameterizing the Constant Block
	Preloading the Workspace Variable
	Specifying a Parameter Configuration
	Analyzing the Example Model
	Simulating the Test Cases

	Detecting Design Errors
	About Design Error Detection
	Workflow for Detecting Design Errors
	Detecting Design Errors in a Model
	About This Example
	Checking Compatibility of a Model
	Analyzing the Model
	Reviewing the Analysis Results
	Reviewing the Results on the Model
	Reviewing the Harness Model
	Reviewing the Analysis Report
	Reviewing Analysis Results in the Model Explorer

	Generating Test Cases
	About Test Case Generation
	Test Case Blocks
	Test Case Functions

	Workflow for Generating Test Cases
	Generating Test Cases to Achieve Decision Coverage for a Model
	Constructing the Example Model
	Checking Compatibility of the Example Model
	What If a Model Is Partially Compatible?

	Configuring Test Generation Options
	Analyzing the Example Model
	Reviewing the Analysis Results
	Reviewing the Results on the Model
	Reviewing the Detailed Analysis Report
	Reviewing the Harness Model
	Simulating Tests and Producing a Model Coverage Report
	Viewing the Data File
	Reviewing Analysis Results in the Model Explorer

	Customizing Test Generation
	Reanalyzing the Example Model
	Analyzing Contradictory Models

	Generating Test Cases for a Subsystem

	Extending Existing Test Cases
	When to Extend Existing Test Cases
	Common Workflow for Extending Existing Test Cases
	Example: Extending Existing Test Cases for a Model that Uses Tem
	Creating a Starting Test Case
	Logging the Starting Test Case
	Extending the Existing Test Cases
	Verifying the Analysis Results

	Example: Extending Existing Test Cases for a Closed-Loop System
	Logging a Starting Test Case
	Extending the Existing Test Cases

	Example: Extending Existing Test Cases for a Modified Model
	Creating Starting Test Cases
	Extending the Existing Test Cases

	Achieving Test Cases for Missing Model Coverage
	Generating Test Cases for Missing Coverage Data
	Example: Achieving Missing Coverage in a Referenced Model
	Recording Coverage Data for the Model
	Finding Test Cases for the Missing Coverage
	Achieving the Missing Coverage
	Verifying 100% Model Coverage

	Achieving Missing Coverage for Subsystems and Model Blocks
	Example: Achieving Missing Coverage in a Closed-Loop Simulation
	Recording Coverage Data for the Model
	Finding Test Cases for Missing Coverage

	Verifying Model Components
	What Is Component Verification?
	Component Verification Approaches
	Using Simulink Design Verifier Tools for Component Verification

	Functions for Component Verification
	Example: Verifying a Component for Code Generation
	About the Example Model
	Preparing the Component for Verification
	Recording Coverage for the Component
	Using Simulink Design Verifier Software to Record Additional Cov
	Combining the Harness Models
	Executing the Component in Simulation Mode
	Executing the Component in Software-in-the-Loop (SIL) Mode

	Considering Specified Minimum and Maximum Values for Inputs Duri
	Overview
	Simulink Design Verifier Support for Specified Input Minimum and
	Limitations of Simulink Design Verifier Support for Specified Mi

	Example: Output Minimum and Maximum Values on Inport Blocks
	sldvData Fields for Minimum and Maximum Input Values
	Example: Minimum and Maximum Values in Simulink.Signal Objects
	Example: Minimum and Maximum Values on Stateflow Data Objects
	Example: Minimum and Maximum Values in Subsystems
	Example: Minimum and Maximum Values in Global Data Storage

	Proving Properties of a Model
	About Property Proving
	Proof Blocks
	Proof Functions

	Workflow for Proving Model Properties
	Proving Properties in a Model
	About This Example
	Constructing the Example Model
	Checking Compatibility of the Example Model
	What If a Model Is Partially Compatible?

	Instrumenting the Example Model
	Configuring Property-Proving Options
	Analyzing the Example Model
	Reviewing the Analysis Results
	Reviewing the Results on the Model
	Reviewing the Detailed Analysis Report
	Reviewing the Harness Model
	Simulation the Model with the Counterexample
	Reviewing Analysis Results in the Model Explorer

	Customizing the Example Proof
	Reanalyzing the Example Model
	Reviewing the Results of the Second Analysis
	Reviewing the Results on the Model
	Reviewing the Analysis Report

	Analyzing Contradictory Models
	Proving Properties in a Large Model

	Using a Verification Model to Prove System-Level Properties
	When to Use a Verification Model for Property Proving
	About this Example
	Understanding the Verification Model
	Proving the Properties of the Design Model
	Fixing the Verification Model

	Proving Properties in a Subsystem
	Property-Proving Examples
	Basic Properties
	Conditions that Trigger a Result
	Increasing or Decreasing Signals
	Exclusivity Operation
	Conditions with One True Element

	Temporal Properties
	Synchronizing the Output with the Input
	Making a Signal Inactive After a Delay
	Extending a True Signal
	Testing the Input Against a Specified Threshold

	Reviewing the Results
	Highlighted Results on the Model
	When to Highlight Results on the Model
	Enabling Highlighted Results on a Model
	Simulink Design Verifier Results Window
	Green Highlighting on Model
	Red Highlighting on Model
	Orange Highlighting on Model

	Simulink Design Verifier Data Files
	About Simulink Design Verifier Data Files
	Overview of the sldvData Structure
	Model Information Fields in sldvData
	ModelInformation Field
	AnalysisInformation Field
	ModelObjects Field
	Constraints Field
	Objectives Field
	TestCases Field / CounterExamples Field
	Version Field

	Simulating Models with Simulink Design Verifier Data Files

	Harness Model
	About the Harness Model
	Creating a Harness Model
	Anatomy of a Harness Model
	Configuration of the Harness Model
	Simulating the Harness Model

	SystemTest TEST-Files
	Simulink Design Verifier Reports
	About Simulink Design Verifier Reports
	Creating Analysis Reports
	Front Matter
	Title
	Table of Contents

	Summary Chapter
	Analysis Information Chapter
	Model Information
	Analysis Options
	Unsupported Blocks
	Constraints
	Block Replacements Summary
	Approximations

	Signal Bounds Chapter
	Objectives Status Chapters
	Design Error Detection Objectives Status
	Test Objectives Status
	Proof Objectives Status
	Objectives Undecided
	Objectives Producing Errors

	Model Items Chapter
	Design Errors Chapter
	Table of Contents
	Summary
	Test Case

	Test Cases Chapter
	Table of Contents
	Summary
	Objectives
	Generated Input Data
	Expected Output
	Combined Objectives
	Long Test Cases

	Properties Chapter
	Table of Contents
	Summary
	Counterexample

	Simulink Design Verifier Log Files
	Reviewing Analysis Results in the Model Explorer

	Analyzing Large Models and Improving Performance
	Sources of Model Complexity
	Analyzing a Large Model
	Types of Large Model Problems
	Using the Default Parameter Values
	Modifying the Analysis Parameters
	Using the Large Model Optimization
	Stopping the Analysis Before Completion

	Generating Reports for Large Models
	Managing Model Data to Simplify the Analysis
	Simplifying Data Types
	Constraining Data

	Partitioning Model Inputs and Generating Tests Incrementally
	Analyzing the Model Using a Bottom-Up Approach
	Extracting Subsystems for Analysis
	Overview of Subsystem Extraction
	sldvextract Function
	Structure of the Extracted Model
	Analyzing Subsystems That Read from Global Data Storage
	Analyzing Function-Call Subsystems

	Analyzing Logical Operations
	Handling Models with Large State Spaces
	Handling Problems with Counters and Timers
	Techniques for Proving Properties of Large Models
	Finding Property Violations While Designing Your Model
	Combining Proving Properties and Finding Proof Violations

	Simulink Design Verifier Configuration Parameters
	Overview of Simulink Design Verifier Configuration Parameters
	Design Verifier Pane
	Design Verifier Pane Overview
	Mode
	Settings
	Tip
	Dependency
	Command-Line Information
	See Also

	Maximum analysis time
	Settings
	Command-Line Information

	Display unsatisfiable test objectives
	Settings
	Command-Line Information

	Automatic stubbing of unsupported blocks and functions
	Settings
	Command-Line Information
	See Also

	Use specified input minimum and maximum values
	Settings
	Command-Line Information
	See Also

	Output directory
	Settings
	Tip
	Command-Line Information
	See Also

	Make output file names unique by adding a suffix
	Settings
	Command-Line Information
	See Also

	Design Verifier Pane: Block Replacements
	Block Replacements Pane Overview
	See Also

	Apply block replacements
	Settings
	Dependencies
	Command-Line Information
	See Also

	List of block replacement rules
	Settings
	Dependency
	Command-Line Information
	See Also

	File path of the output model
	Settings
	Dependency
	Command-Line Information
	See Also

	Design Verifier Pane: Parameters
	Parameters Pane Overview
	Apply parameters
	Settings
	Dependency
	Command-Line Information
	See Also

	Parameter configuration file
	Settings
	Dependency
	Command-Line Information
	See Also

	Design Verifier Pane: Test Generation
	Test Generation Pane Overview
	See Also

	Model coverage objectives
	Settings
	Command-Line Information
	See Also

	Test conditions
	Settings
	Command-Line Information
	See Also

	Test objectives
	Settings
	Command-Line Information
	See Also

	Maximum test case steps
	Settings
	Command-Line Information
	See Also

	Test suite optimization
	Settings
	Tip
	Command-Line Information
	See Also

	Extend existing test cases
	Settings
	Dependency
	Command-Line Information
	See Also

	Data file
	Settings
	Command-Line Information
	See Also

	Ignore objectives satisfied by existing test cases
	Settings
	Command-Line Information
	See Also

	Ignore objectives satisfied in existing coverage data
	Settings
	Dependency
	Command-Line Information
	See Also

	Coverage data file
	Settings
	Command-Line Information
	See Also

	Design Verifier Pane: Design Error Detection
	Design Error Detection Pane Overview
	Integer overflow
	Settings
	Command-Line Information
	See Also

	Division by zero
	Settings
	Command-Line Information
	See Also

	Design Verifier Pane: Property Proving
	Property Proving Pane Overview
	See Also

	Assertion blocks
	Settings
	Command-Line Information
	See Also

	Proof assumptions
	Settings
	Command-Line Information
	See Also

	Strategy
	Settings
	Dependency
	Command-Line Information
	See Also

	Maximum violation steps
	Settings
	Dependency
	Command-Line Information
	See Also

	Design Verifier Pane: Results
	Results Pane Overview
	See Also

	Save test data to file
	Settings
	Dependency
	Command-Line Information
	See Also

	Data file name
	Settings
	Dependency
	Command-Line Information
	See Also

	Include expected output values
	Settings
	Tips
	Dependency
	Command-Line Information
	See Also

	Randomize data that does not affect outcome
	Settings
	Tips
	Dependency
	Command-Line Information
	See Also

	Display results of the analysis on the model
	Settings
	Command-Line Information
	See Also

	Save test harness as model
	Settings
	Dependency
	Command-Line Information
	See Also

	Harness model file name
	Settings
	Dependency
	Command-Line Information
	See Also

	Reference input model in generated harness
	Settings
	Tips
	Command-Line Information
	See Also

	Save test harness as SystemTest TEST-file (will reference saved
	Settings
	Dependency
	Command-Line Information
	See Also

	SystemTest file name
	Settings
	Dependency
	Command-Line Information
	See Also

	Design Verifier Pane: Report
	Report Pane Overview
	See Also

	Generate report of the results
	Settings
	Dependencies
	Command-Line Information
	See Also

	Report file name
	Settings
	Dependency
	Command-Line Information
	See Also

	Include screen shots of properties
	Settings
	Dependency
	Command-Line Information
	See Also

	Display report
	Settings
	Dependency
	Command-Line Information
	See Also

	Parameter Command-Line Information Summary

	Simulink Block Support
	Overview of Simulink Block Support
	Additional Math and Discrete Library
	Commonly Used Blocks Library
	Continuous Library
	Discontinuities Library
	Discrete Library
	Logic and Bit Operations Library
	Lookup Tables Library
	Math Operations Library
	Model Verification Library
	Model-Wide Utilities Library
	Ports & Subsystems Library
	Signal Attributes Library
	Signal Routing Library
	Sinks Library
	Sources Library
	User-Defined Functions Library

	Support for Code Generation from MATLAB
	Glossary
	Examples
	Generating Test Cases
	Automatic Stubbing
	Working with Block Replacements
	Specifying Parameter Configurations
	Component Verification
	Considering Specified Minimum and Maximum Inputs
	Proving Properties of a Model

